Alternate Control Strategy for Dreissinids Using Electrical Methods

Since the discovery of zebra mussels in the Laurentian Great Lakes in 1986 on natural gas well head and well markers, zebra and quagga mussels (Dreissena spp.) have spread across large areas of the continental United States. In industrial systems, control of Dreissena spp. biofouling has primarily concentrated on oxidizing and nonoxidizing chemicals. However, chemical treatments are usually not viable options in Reclamation facilities. There is a need for economical and environmentally safe control strategies for these major biofouling mussels in Reclamation raw water delivery systems. Alternative methods utilizing electricity has been shown to impact mussel behavior, including mortality and a reduction in the rate of byssogenesis (byssus attachment). Methods include electrified fields which inhibited passage of live veligers (larval life stage) and electrical currents which prevented attachments to metallic surfaces. This project proposes to carry out well established electrical testing procedures to investigate the effectiveness of electrical control methods under field conditions similar to those found in Reclamation facilities. The goals of this project are to determine and compare the electrical dosage and electrical power consumption of AC and DC applied at different waveforms (sinusoidal AC, squared DC, cycle rates, etc.) to induce quagga mussel mortality and inhibition of byssogenesis in the raw water parameters typically found in Reclamation facilities on the Lower Colorado River (LCR). Electrical dosage or power density can be determined by the measured ambient conductivity and the applied voltage gradient.