USBR: Can better representation of low-elevation snowpack improve operational forecasts?

Can better representation of low-elevation snowpack improve operational forecasts? USBR

U.S. Bureau of Reclamation
Principal Investigator: Daniel Broman
Research Topic: Water Supply Forecasting

To what extent do low-elevation snowpack contribute to streamflow forecast errors is current forecast models? What improvement in forecast skill can be gained by changing the spatial configuration of forecast models including improvements to their representation of low-elevation snow and to reservoir inflows? What improvement in forecast skill can be gained by incorporating in remotely-sensed and/or ground-based snow products into forecast models?

Need and Benefit

The Great Plains Region includes a range of reservoirs that receive at least some inflow from low-elevation snowpack. The inability to accurately forecast inflows has been attributed to a lack of accurate representation of low-elevation snowpack and snowmelt in current forecast models, and present challenges to water management. The lack of forecast skill can result in flooding events, including the Spring 2018 flooding on the Milk River in northern Montana.

Improved forecasts would provide operators with the ability to mitigate these events and improve water management. This work will directly aid water management in the Great Plains Region, consistent with the Regional Director’s
identified need. Data, tools, and approaches could be used to address similar challenges identified in other Reclamation Regions (e.g. MP and PN) as well as address needs identified by Science and Technology Program’s Water Operations and Planning Research Area, including incorporating remotely sensed snow (Need #1) developing tools (ASSET) to decrease the latency between data availability and use (Need #2) and generally improving forecast ability.