Improving Hydropower Benefits by Linking Environmental Decisions and Power System Trade-offs Through Flow Release Decisions [HydroWIRES]

Hydropower has a new and potentially important role in enhancing resilience of the electric system due to its ability to generate power without inputs from the grid. It is imminently important to understand if hydropower can have the necessary operational flexibility to provide these services given environmental flow requirements placed on the fleet. Environmental flow requirements included in Federal Energy Regulatory Commission (FERC) hydropower licenses are an important component to preserving and, in some cases, restoring ecological function and services provided by riverine ecosystems. While environmental flow requirements in a FERC license may improve outcomes such as water quality, fish habitat, or recreation, they may limit the operational flexibility of hydropower plants, narrowing their ability to respond to the grid. Defining linkages between flow requirements and specific environmental outcomes is essential to not only producing favorable environmental outcomes, but also to enabling greater operational flexibility within a given hydropower facility. This project will provide pathways for this co-optimization in hydropower systems by quantitatively linking power system and environmental outcomes through the common hub of flow decisions. It is anticipated that the co-optimization framework created in this project will provide a guide for designing environmental flow requirements that create value propositions for a diversity of stakeholders in FERC licensing proceedings.