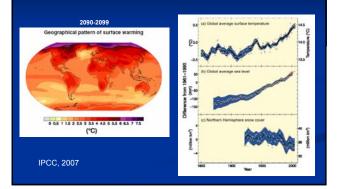
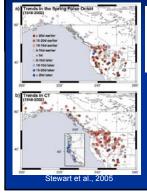
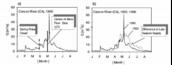
Response of California's Hydropower Rivers to Climate Change

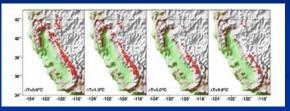

- Change is happening and will hurt some
- Adaptation and optimization reduces the financial costs
- Demand for ecosystem services beyond hydropower generation will be the greatest challenge

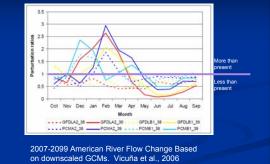
Acknowledgements

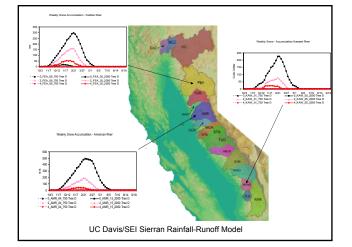


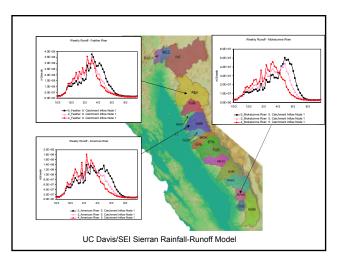

- UC Davis: J. Lund, J. Viers, P. Moyle, H. Doremus, K. Madani, M. Jenkins, et al.
- Stockholm Environment Institute: D. Purkey, C. Young, M. Escobar
- Watercourse Engineering Inc. L. Basdekas, M. Deas
- Funding Provided by: Resources Legacy Foundation Fund and California Energy Commission

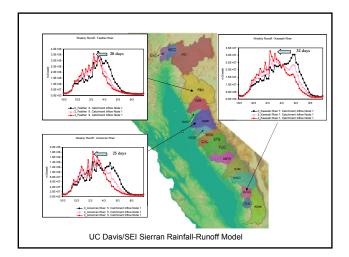
Global climate change science is consistent: we have warmed, are warming, and will warm


Change is taking place regionally as well, albeit with less certainty about causes

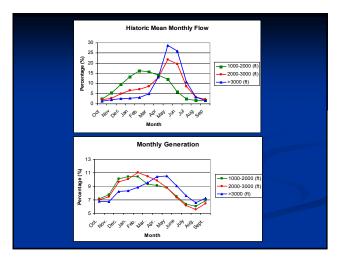

- Progressive negative shift in onset of spring snowmelt pulse
- Negative shift in center of mass
- Regional increase in average annual temperature

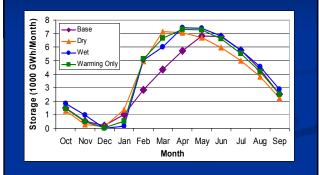

A regionally-consistent prediction of a future with less snow/more rain

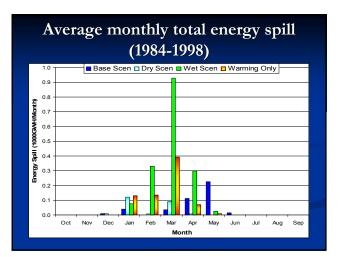



Snow-dominated regions under incremental temperature increases above 1961-1990 levels. Maurer et al., 2007

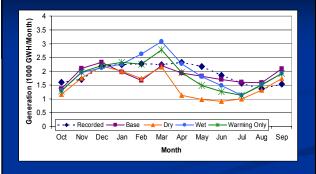
Spaghetti-diagrams dominate, reflecting proliferation of Global Circulation Models

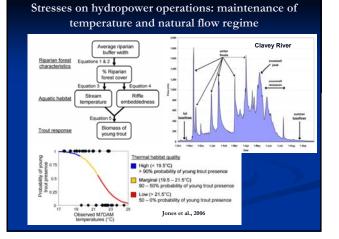


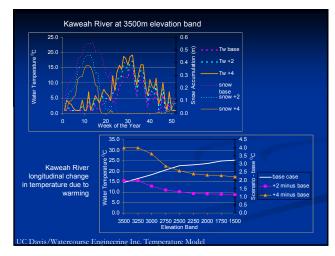

Impacts of Climate Change on Hydropower Operations



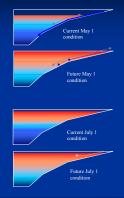
- Energy demand
- Timing of water availability
- . Quantity of water available
- Availability of hydropower to import
- . Thermal generation efficiency



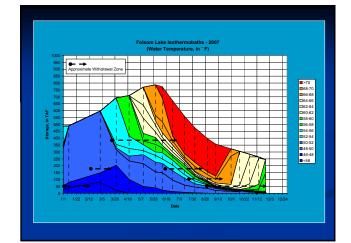

Monthly Generation (Optimized)



Model Results				
	Scenario			
	Base	Dry	Wet	Warming- Only
Generation (1000 GWH/yr)	22.3	18.0	23.4	22.0
Generation Change with Respect to the Base Case (%)		- 19.3	+ 4.8	- 1.4
Spill (MWH/yr)	433	224	1,661	735
Spill Change with Respect to the Base Case (%)		- 46.0	+ 283.9	+ 58.8
Revenue (Million \$/yr)	1,449	1,271	1,483	1,435
Revenue Change with Respect to the Base Case (%)		- 12.3	+ 2.3	- 0.9



J. The



Cold Pool Management Challenges

- Increase storage to expand cold pool
- Construct new facilities for cold water storage
- Improve existing facilities (temp gates, etc.)
- Adapt facility operations

Climate Change: There's Something in it for Everyone

- Continued change, with no definitive answer to "how much"
- Optimization strategies significantly reduce the costs
- But these will be constrained by ecosystem services demands (FERC)