RECLANATION Managing Water in the West

IC Northwest @ m

Hydropower Resource Assessment at Existing Reclamation Facilities March 2011

U.S. Department of the Interior Bureau of Reclamation

Hydropower Resource Assessment at Existing Reclamation Facilities

Prepared by

United States Department of the Interior Bureau of Reclamation Power Resources Office

U.S. Department of the Interior Bureau of Reclamation Denver, Colorado

Mission Statements

The mission of the Department of the Interior is to protect and provide access to our Nation's natural and cultural heritage and honor our trust responsibilities to Indian Tribes and our commitments to island communities.

The mission of the Bureau of Reclamation is to manage, develop, and protect water and related resources in an environmentally and economically sound manner in the interest of the American public.

Disclaimer Statement

The report contains no recommendations. Rather, it identifies a set of candidate sites based on explicit criteria that are general enough to address all sites across the geographically broad scope of the report. The report contains limited analysis of environmental and other potential constraints at the sites. The report must not be construed as advocating development of one site over another, or as any other site-specific support for development. There are no warranties, express or implied, for the accuracy or completeness of any information, tool, or process in this report.

Contents

Executive Summary	ES-1
Chapter 1 Introduction	1.1
1.1 Background	
1.1.1 Federal Memorandum of Understanding for Hydropower	
1.1.2 Section 1834 of the Energy Policy Act of 2005	
1.1.3 Renewable Energy Incentive Programs	
1.2 Purpose and Objectives	
1.3 Resource Assessment Overview	
1.4 Public Input	
1.5 Report Content	
Chapter 2 Hydropower Site Data Collection	
2.1 Site Location and Proximity Data	
2.2 Site Hydrologic Data	
2.2.1 Flow	
2.2.2 Net Hydraulic Head	
2.3 Data for Canals and Tunnels	
2.4 Data Sources	
2.5 Data Collection and Confidence Levels	
2.6 Site Data Summary	
Chapter 3 Site Analysis Methods and Assumptions	
3.1 Power Production Potential	
3.1.1 Design Head and Flow	
3.1.2 Turbine Selection and Efficiency	
3.1.3 Power Production Calculations	
3.2 Benefits Evaluation	
3.2.1 Power Generation	
3.2.2 Green Incentives	
3.3 Cost Estimates	
3.3.1 Construction Costs	
3.3.2 Total Development Costs	
3.3.3 Operation and Maintenance Costs	
3.3.4 Cost Calculations	
3.4 Benefit Cost Ratio and Internal Rate of Return	
3.5 Constraints Analysis	
3.5.1 Potential Regulatory Constraints	
3.5.2 Constraint Mapping	
3.5.3 Local Information for Fish and Wildlife and Fish Passage Cons	traints 3-22

Chapter 4	Hydropower Assessment Tool	
4.1 Model So	oftware	
4.2 Model Co	omponents	
4.3 Model Us	sage	
4.4 Applicati	on and Limitations	
Chapter 5	Site Evaluation Results	
5.1 Great Pla	ins Region	
5.1.1 O	verview	
5.1.2 Pe	ower Production	
5.1.3 E	conomic Evaluation	
5.1.4 C	onstraints Evaluation	
5.2 Lower Co	olorado Region	
5.2.1 O	verview	
5.2.2 Pe	ower Production	
5.2.3 E	conomic Evaluation	
5.2.4 C	onstraints Evaluation	
5.3 Mid-Paci	fic Region	
5.3.1 O	verview	
5.3.2 Pe	ower Production	
5.3.3 E	conomic Evaluation	
5.3.4 C	onstraints Evaluation	
5.4 Pacific N	orthwest Region	
5.4.1 O	verview	
5.4.2 Pe	ower Production	
5.4.3 E	conomic Evaluation	
5.4.4 C	onstraints Evaluation	
5.5 Upper Co	lorado Region	
11	verview	
5.5.2 Pe	ower Production	
5.5.3 E	conomic Evaluation	
5.5.4 C	onstraints Evaluation	
5.6 Discount	Rate Sensitivity Analysis	
	ce Level Sensitivity Analysis	
	n Seasonal Flows	
Chapter 6	Conclusions	
6.1 Results S	ummary	
	ons	
	Future Uses of Study Results	
Chapter 7	References	7-1

Tables

Table ES-1.	Site SummaryES-2
Table ES-2.	Sites with Hydropower Potential within Benefit Cost Ratio
	(with Green Incentives) Ranges
Table ES-3.	Sites with Benefit Cost Ratios (with Green Incentives) Greater than 0.75ES-8
T_{a} bla 2.1	Number of Sites in Each Declamation Decion
Table 2-1. Table 2-2.	Number of Sites in Each Reclamation Region
	Number of High, Medium, and Low Confidence Sites per Region
Table 2-3.	Site Data and Hydropower Potential Summary
Table 3-1.	Generation Data for Boca Dam Site (for 30 year data set)
Table 3-2.	Development of Prices Using Aurora ^{xmp®} Areas
Table 3-3.	All-hours Price Forecasts for January from 2014 through 2060 (\$/MWh)
Table 3-4.	Available Hydropower Performance Based Incentives
Table 3-5.	Association Between Mitigation Costs and Constraints
Table 3-6.	Example Costs for Boca Dam Site
Table 3-7.	Boca Dam Site Benefit Cost Ratio and IRR Summary
Table 5-1.	Site Inventory in Great Plains Region
Table 5-2.	Benefit Cost Ratio (With Green Incentives) Summary of Sites Analyzed in
1 abie 3-2.	Great Plains Region
Table 5-3.	Sites with Benefit Cost Ratio (With Green Incentives) Greater than 0.75 in
14010 5-5.	Great Plains Region
Table 5-4.	Hydropower Production Summary for Sites in Great Plains Region
Table 5-5.	Economic Evaluation Summary for Sites in Great Plains Region
Table 5-6.	Number of Sites in the Great Plains Region with Potential Regulatory
1 able 5-0.	Constraints
Table 5-7.	Site Inventory in Lower Colorado Region
Table 5-8.	Benefit Cost Ratio Summary of Sites Analyzed in Lower Colorado Region 5-16
Table 5-9.	Hydropower Production Summary for Sites in Lower Colorado Region
Table 5-10.	Economic Evaluation Summary for Sites in Lower Colorado Region
Table 5-11.	Number of Sites in the Lower Colorado Region with Potential Regulatory
	Constraints
Table 5-12.	Site Inventory in Mid-Pacific Region
Table 5-13.	Benefit Cost Ratio Summary of Sites Analyzed in Mid-Pacific Region
Table 5-14.	Sites with Benefit Cost Ratio (With Green Incentives) Greater than 0.75 in
	Mid-Pacific Region
Table 5-15.	Hydropower Production Summary for Sites in Mid-Pacific Region
Table 5-16.	Economic Evaluation Summary for Sites in Mid-Pacific Region
Table 5-17.	Number of Sites in the Mid-Pacific Region with Potential Regulatory
	Constraints
Table 5-18.	Site Inventory in Pacific Northwest Region

Contents Hydropower Resource Assessment at Existing Reclamation Facilities

Benefit Cost Ratio Summary of Sites Analyzed in Pacific Northwest Region	5-29
	5-30
0	
	5-34
· · · · · · · · · · · · · · · · · · ·	5-54
	5-35
	5-38
	5-39
Economic Evaluation Summary for Sites in Upper Colorado Region	5-44
Number of Sites in the Upper Colorado Region with Potential Regulatory	
Constraints	5-46
20 and 30 Percent Exceedance Level Sensitivity Results	5-52
•	
•	
Site Inventory Summary	6-1
	6-2
	Sites with Benefit Cost Ratio (With Green Incentives) Greater than 0.75 in Pacific Northwest Region

Figures

Figure 1-1.	Resource Assessment Site Locations	1-7
Figure 2-1.	Great Plains Region (Northwest) Assessment Site Location Map	
Figure 2-2.	Great Plains Region (Northeast) Assessment Site Location Map	
Figure 2-3.	Great Plains Region (South) Assessment Site Location Map	
Figure 2-4.	Lower Colorado Region Assessment Site Location Map	
Figure 2-5.	Mid-Pacific Region (North) Assessment Site Location Map	
Figure 2-6.	Mid-Pacific Region (South) Assessment Site Location Map	
Figure 2-7.	Pacific Northwest Region (West) Assessment Site Location Map	
Figure 2-8.	Pacific Northwest Region (East) Assessment Site Location Map	
Figure 2-9.	Upper Colorado Region (West) Assessment Site Location Map	
Figure 2-10.	Upper Colorado Region (East) Assessment Site Location Map	
Figure 3-1.	Resource Assessment Process Flow Chart	
Figure 3-2.	Boca Dam Flow Exceedance Curve	

Figure 3-3.	Boca Dam Net Head Exceedance Curve	
Figure 3-4.	Turbine Selection Matrix	
Figure 3-5.	Pelton Turbine Hill Diagram	
Figure 3-6.	Kaplan Turbine Hill Diagram	
Figure 3-7.	Francis Turbine Hill Diagram	
Figure 3-8.	Regulatory Constraints	3
Figure 5-1.	Great Plains Region (Northwest) Yellowtail Afterbay Dam Site Map	5
Figure 5-2.	Great Plains Region (South) Twin Buttes Dam Site Map5-	6
Figure 5-3.	Great Plains Region (Northwest) Potential Constraints Map	3
Figure 5-4.	Great Plains Region (Northeast) Potential Constraints Map5-1	4
Figure 5-5.	Great Plains Region (South) Potential Constraints Map	5
Figure 5-6.	Lower Colorado Region Potential Constraints Map	
Figure 5-7.	Lower Colorado Region Bartlett Dam Site Map	0
Figure 5-8.	Mid-Pacific Region (North) Prosser Creek/Boca Dam Site Map	
Figure 5-9.	Mid-Pacific Region (North) Potential Constraints Map5-2	
Figure 5-10.	Mid-Pacific Region (South) Potential Constraints Map5-2	8
Figure 5-11.	Pacific Northwest Region (West) Arthur R. Bowman Dam Site Map 5-3	1
Figure 5-12.	Pacific Northwest Region (West) Easton Diversion Dam Site Map5-3	2
Figure 5-13.	Pacific Northwest Region (West) Potential Constraints Map	6
Figure 5-14.	Pacific Northwest Region (East) Potential Constraints Map	7
Figure 5-15.	Upper Colorado Region Sixth Water/Upper Diamond Fork Flow Control	
-	Structures Site Map	1
Figure 5-16.	Upper Colorado Region (West) Potential Constraints Map	7
Figure 5-17.	Upper Colorado Region (East) Potential Constraints Map	8
Figure 5-18.	Discount Rate Sensitivity Analysis Results	0
	Boca Dam Site Discount Rate Sensitivity Analysis	
	A-Drop Project Flow Exceedance Curve	

Appendices

Appendix A Site Identification

Appendix B Green Incentive Programs

Appendix C Costs Estimating Method

Appendix D Using the Hydropower Assessment Tool

Appendix E Site Evaluation Results

Appendix F Constraint Evaluation Results

Appendix G Public Comment Summary

Abbreviations and Acronyms

cfscubic feet per secondCOColoradoCorpsUnited States Army Corps of EngineersCouncilNorthwest Power and Conservation CouncilDOADepartment of ArmyDOEDepartment of EnergyDOIDepartment of the InteriorDSIREDatabase of State Incentives for Renewables and EfficiencyFERCFederal Energy Regulatory CommissionGISGeographic Information SystemGPGreat PlainsINLIdaho National Engineering and Environmental LaboratoryIRECInterstate Renewable Energy CouncilIRRinternal rate of returnkVkilo voltagekWhkilowatt hoursLCLower ColoradoMOUMemorandum of UnderstandingMPMid-PacificMTMontanaMWmegawatt hoursNPSNational Park ServiceO&Moperation and maintenanceP&GsEconomic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of ReclamationResource AssessmentHydropower Resource Assessment at Existing Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Fores ServiceUSGSUnited States Fish and Wildlife Service	BLM	Bureau of Land Management
CorpsUnited States Army Corps of EngineersCouncilNorthwest Power and Conservation CouncilDOADepartment of ArmyDOEDepartment of EnergyDOIDepartment of the InteriorDSIREDatabase of State Incentives for Renewables and EfficiencyFERCFederal Energy Regulatory CommissionGISGeographic Information SystemGPGreat PlainsINLIdaho National Engineering and Environmental LaboratoryIRRinternal rate of returnkVkilo voltagekWhkilowatt hoursLCLower ColoradoMOUMemorandum of UnderstandingMPMid-PacificMTMontanaMWmegawatt hoursNPSNational Park ServiceO&Moperation and maintenanceP&GsEconomic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of ReclamationResource AssessmentHydropower Resource Assessment at Existing Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFVSUnited States Forest ServiceUSFWSUnited States First Service	cfs	cubic feet per second
CouncilNorthwest Power and Conservation CouncilDOADepartment of ArmyDOEDepartment of EnergyDOIDepartment of the InteriorDSIREDatabase of State Incentives for Renewables and EfficiencyFERCFederal Energy Regulatory CommissionGISGeographic Information SystemGPGreat PlainsINLIdaho National Engineering and Environmental LaboratoryIRECInterstate Renewable Energy CouncilIRRinternal rate of returnkVkilo voltagekWhkilowatt hoursLCLower ColoradoMOUMemorandum of UnderstandingMPMid-PacificMTMontanaMWmegawattMWhmegawattMWhmegawatt hoursNPSNational Park ServiceQ&Moperation and maintenanceP&GsEconomic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service	CO	Colorado
DOADepartment of ArmyDOEDepartment of EnergyDOIDepartment of the InteriorDSIREDatabase of State Incentives for Renewables and EfficiencyFERCFederal Energy Regulatory CommissionGISGeographic Information SystemGPGreat PlainsINLIdaho National Engineering and Environmental LaboratoryIRECInterstate Renewable Energy CouncilIRRinternal rate of returnkVkilo voltagekWhkilowatt hoursLCLower ColoradoMOUMemorandum of UnderstandingMPMid-PacificMTMontanaMWmegawattMWhmegawatt hoursNPSNational Park ServiceO&Moperation and maintenanceP&GsEconomic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service	Corps	United States Army Corps of Engineers
DOEDepartment of EnergyDOIDepartment of the InteriorDSIREDatabase of State Incentives for Renewables and EfficiencyFERCFederal Energy Regulatory CommissionGISGeographic Information SystemGPGreat PlainsINLIdaho National Engineering and Environmental LaboratoryIRECInterstate Renewable Energy CouncilIRRinternal rate of returnkVkilo voltagekWhkilowatt hoursLCLower ColoradoMOUMemorandum of UnderstandingMPMid-PacificMTMontanaMWmegawattMWhmegawatt hoursNPSNational Park ServiceO&Moperation and maintenanceP&GsEconomic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service	Council	Northwest Power and Conservation Council
DOIDepartment of the InteriorDSIREDatabase of State Incentives for Renewables and EfficiencyFERCFederal Energy Regulatory CommissionGISGeographic Information SystemGPGreat PlainsINLIdabo National Engineering and Environmental LaboratoryIRECInterstate Renewable Energy CouncilIRRinternal rate of returnkVkilo voltagekWhkilowatt hoursLCLower ColoradoMOUMemorandum of UnderstandingMPMid-PacificMTMontanaMWmegawattMWhmegawatt hoursNPSNational Park ServiceO&Moperation and maintenanceP&GsEconomic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of Reclamation FacilitiesP-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service	DOA	Department of Army
DSIREDatabase of State Incentives for Renewables and EfficiencyFERCFederal Energy Regulatory CommissionGISGeographic Information SystemGPGreat PlainsINLIdaho National Engineering and Environmental LaboratoryIRECInterstate Renewable Energy CouncilIRRinternal rate of returnkVkilo voltagekWhkilowatt hoursLCLower ColoradoMOUMemorandum of UnderstandingMPMid-PacificMTMontanaMWmegawattMWhmegawattMWhoperation and maintenanceP&GsEconomic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of Reclamation FacilitiesPNPacific NorthwestReclamationBureau of Reclamation FacilitiesVLCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service	DOE	Department of Energy
FERCFederal Energy Regulatory CommissionGISGeographic Information SystemGPGreat PlainsINLIdaho National Engineering and Environmental LaboratoryIRECInterstate Renewable Energy CouncilIRRinternal rate of returnkVkilo voltagekWhkilowatt hoursLCLower ColoradoMOUMemorandum of UnderstandingMPMid-PacificMTMontanaMWmegawattMWhmegawatt hoursNPSNational Park ServiceO&Moperation and maintenanceP&GsEconomic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of ReclamationResource AssessmentHydropower Resource Assessment at Existing Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service	DOI	Department of the Interior
GISGeographic Information SystemGPGreat PlainsINLIdaho National Engineering and Environmental LaboratoryIRECInterstate Renewable Energy CouncilIRRinternal rate of returnkVkilo voltagekWhkilowatt hoursLCLower ColoradoMOUMemorandum of UnderstandingMPMid-PacificMTMontanaMWmegawattMWhmegawatt hoursNPSNational Park ServiceO&Moperation and maintenanceP&GsEconomic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of ReclamationResource AssessmentHydropower Resource Assessment at Existing Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service	DSIRE	Database of State Incentives for Renewables and Efficiency
GPGreat PlainsINLIdaho National Engineering and Environmental LaboratoryIRECInterstate Renewable Energy CouncilIRRinternal rate of returnkVkilo voltagekWhkilowatt hoursLCLower ColoradoMOUMemorandum of UnderstandingMPMid-PacificMTMontanaMWmegawattMWhmegawatt hoursNPSNational Park ServiceO&Moperation and maintenanceP&GsEconomic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of ReclamationResource AssessmentHydropower Resource Assessment at Existing Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service	FERC	Federal Energy Regulatory Commission
INLIdaho National Engineering and Environmental LaboratoryIRECInterstate Renewable Energy CouncilIRRinternal rate of returnkVkilo voltagekWhkilowatt hoursLCLower ColoradoMOUMemorandum of UnderstandingMPMid-PacificMTMontanaMWmegawattMWhmegawatt hoursNPSNational Park ServiceO&Moperation and maintenanceP&GsEconomic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service	GIS	Geographic Information System
IRECInterstate Renewable Energy CouncilIRRinternal rate of returnkVkilo voltagekWhkilowatt hoursLCLower ColoradoMOUMemorandum of UnderstandingMPMid-PacificMTMontanaMWmegawattMWhmegawatt hoursNPSNational Park ServiceO&Moperation and maintenanceP&GsEconomic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service	GP	Great Plains
IRRinternal rate of returnkVkilo voltagekWhkilowatt hoursLCLower ColoradoMOUMemorandum of UnderstandingMPMid-PacificMTMontanaMWmegawattMWhmegawatt hoursNPSNational Park ServiceO&Moperation and maintenanceP&GsEconomic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service	INL	Idaho National Engineering and Environmental Laboratory
kVkilo voltagekWhkilowatt hoursLCLower ColoradoMOUMemorandum of UnderstandingMPMid-PacificMTMontanaMWmegawattMWhmegawatt hoursNPSNational Park ServiceO&Moperation and maintenanceP&GsEconomic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service	IREC	Interstate Renewable Energy Council
kWhkilowati hoursLCLower ColoradoMOUMemorandum of UnderstandingMPMid-PacificMTMontanaMWmegawattMWhmegawatt hoursNPSNational Park ServiceO&Moperation and maintenanceP&GsEconomic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of ReclamationResource AssessmentHydropower Resource Assessment at Existing Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service	IRR	internal rate of return
LCLower ColoradoMOUMemorandum of UnderstandingMPMid-PacificMTMontanaMWmegawattMWhmegawatt hoursNPSNational Park ServiceO&Moperation and maintenanceP&GsEconomic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service	kV	kilo voltage
MOUMemorandum of UnderstandingMPMid-PacificMTMontanaMWmegawattMWhmegawatt hoursNPSNational Park ServiceO&Moperation and maintenanceP&GsEconomic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of ReclamationResource AssessmentHydropower Resource Assessment at Existing Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service	kWh	kilowatt hours
MPMid-PacificMTMontanaMWmegawattMWhmegawatt hoursNPSNational Park ServiceO&Moperation and maintenanceP&GsEconomic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of ReclamationResource AssessmentHydropower Resource Assessment at Existing Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service	LC	Lower Colorado
MTMontanaMWmegawattMWhmegawatt hoursNPSNational Park ServiceO&Moperation and maintenanceP&GsEconomic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of ReclamationResource AssessmentHydropower Resource Assessment at Existing Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service	MOU	Memorandum of Understanding
MWmegawattMWhmegawatt hoursNPSNational Park ServiceO&Moperation and maintenanceP&GsEconomic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of ReclamationResource AssessmentHydropower Resource Assessment at Existing Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service	MP	Mid-Pacific
MWhmegawatt hoursNPSNational Park ServiceO&Moperation and maintenanceP&GsEconomic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of ReclamationResource AssessmentHydropower Resource Assessment at Existing Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service	MT	Montana
NPSNational Park ServiceO&Moperation and maintenanceP&GsEconomic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of ReclamationResource AssessmentHydropower Resource Assessment at Existing Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service	MW	megawatt
O&Moperation and maintenanceP&GsEconomic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of ReclamationResource AssessmentHydropower Resource Assessment at Existing Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service	MWh	6
P&GsEconomic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of ReclamationResource AssessmentHydropower Resource Assessment at Existing Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service		National Park Service
Water and Related Land Resources Implementation StudiesPNPacific NorthwestReclamationBureau of ReclamationResource AssessmentHydropower Resource Assessment at Existing Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service		
PNPacific NorthwestReclamationBureau of ReclamationResource AssessmentHydropower Resource Assessment at Existing Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service	P&Gs	-
ReclamationBureau of ReclamationResource AssessmentHydropower Resource Assessment at Existing Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service		Water and Related Land Resources Implementation Studies
Resource AssessmentHydropower Resource Assessment at Existing Reclamation FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service		Pacific Northwest
FacilitiesT-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service	Reclamation	Bureau of Reclamation
T-linetransmission lineUCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service	Resource Assessment	• •
UCUpper ColoradoUSFSUnited States Forest ServiceUSFWSUnited States Fish and Wildlife Service		
USFS United States Forest Service USFWS United States Fish and Wildlife Service		
USFWS United States Fish and Wildlife Service		11
	USFS	
USGS United States Geological Survey		United States Fish and Wildlife Service
	USGS	United States Geological Survey

This page intentionally left blank.

Executive Summary

Recent Federal policies and legislation focus on moving the nation towards a cleaner energy economy that includes developing environmentally appropriate renewable energy projects involving solar, wind and waves, geothermal, biofuels, and hydropower. The 2010 Federal Memorandum of Understanding for Hydropower and the Energy Policy Act of 2005 direct Reclamation to evaluate development of new hydropower projects at Federally-owned facilities and upgrade or rehabilitate existing hydropower generation facilities, as a contribution to the nation's clean energy goals. State policies are also starting to encourage renewable energy development. Some states have adopted renewable portfolio standards that require electricity providers to obtain a minimum percentage of their power from renewable energy resources by a certain date.

Recognizing the current national emphasis on renewable energy and its extensive existing water infrastructure systems, Reclamation is undertaking the *Hydropower Resource Assessment at Existing Reclamation Facilities* (Resource Assessment) to assess hydropower development at existing facilities to contribute to nationwide renewable energy strategies. Reclamation identified 530 sites, including reservoir dams, diversion dams, canals, tunnels, dikes and siphons, in Reclamation's five regions, comprised of the 17 western states, for analysis in the Resource Assessment. All 530 sites were considered in the analysis, of which, 191 sites were determined to have some level of hydropower potential.

Purpose

The purpose of the Resource Assessment is to provide information on whether or not hydropower development at existing Reclamation facilities would be economically viable and possibly warrant further investigation. The assessment is mainly targeted towards municipalities and private developers that could further evaluate the potential to increase hydropower production at Reclamation sites. Developers could use the information provided in this assessment to focus more detailed analysis on sites that demonstrate a reasonable potential for being economically and financially viable. The Resource Assessment is not intended to provide feasibility level analyses for the potential sites.

Site Identification and Data Collection

Reclamation initially identified 530 potential hydropower sites in the study entitled *Potential Hydroelectric Development at Existing Federal Facilities* (May 2007), developed to comply with Section 1834 of the Energy Policy Act of 2005. The same 530 sites are reevaluated in this Resource Assessment. The first step in the Resource Assessment was collecting available flow, head water and tail water elevation data for each site. Significant efforts were made to collect hydrologic data for all 530 sites, including obtaining data from existing stream gages, facility designs, Reclamation offices' and irrigation districts' records, and field staff knowledge. Minimum data required for analysis include the state the site is located in, a continuous period of daily flow records of at least 1 year (3 years recommended), defined head water and tail water elevations, and distance to the nearest transmission or distribution line.

Data collection indicated that each of the 530 sites were in one of the following data categories. Table ES-1 summarizes how the sites were categorized.

- 1) Site has some level of hydropower potential Hydrologic data was collected for the site and the Hydropower Assessment Tool indicated that some level of hydropower could be generated at the site;
- Site does not have hydropower potential Local area knowledge or available hydrologic data indicated that the site does not have hydropower potential because flows or net head are too low or infrequent for hydropower development;
- 3) Canal or tunnel site that needs further analysis All dams and diversion dams were evaluated for hydropower potential, but further analysis is needed to determine net head and seasonal flows at some canal and tunnel sites to determine hydropower potential. Reclamation canal and tunnel sites are being addressed in a separate ongoing analysis; or
- 4) Site should be removed from the analysis The site was either a duplicate to another site identified, no longer a Reclamation-owned site, had hydropower already developed or hydropower was being developed at the site.

	No. of Sites
Total Sites Identified	530
Sites with No Hydropower Potential	218
Total Sites with Hydropower Potential	191
Canal or Tunnel Sites (Separate Analysis In	52
Progress)	
Sites Removed from Analysis ¹	69
1 – Sites were removed from the analysis for various reasons, including another site identified, no longer a Reclamation-owned site, hydropower developed or being developed at the site.	

Table ES-1 Site Summary

Because data varied substantially across all sites, Reclamation categorized data collected as high, medium, or low confidence based on data source, availability

and consistency of data. High confidence data was assigned to sites with complete daily flow data, generally from stream gages, and recorded head and tail water elevations. Of the total 530 sites, 117 sites had high confidence data, 69 sites had medium confidence data, and 275 sites had low confidence data (note 69 sites were removed from the analysis, as described above, and not assigned confidence ratings). Low confidence sites include canals and tunnels that require further analysis. Results from low confidence data, though useful to analyze a site's potential at this preliminary level of investigation, should not be used for more detailed or feasibility level analyses. Efforts to collect more reliable data (i.e. higher confidence) should be made in subsequent analyses.

Hydropower Assessment Tool

Reclamation developed the Hydropower Assessment Tool to estimate potential energy generation and economic net benefits at the identified Reclamation facilities. The tool is an Excel spreadsheet model with embedded macro functions. Using the data inputs described above, the tool computes power generation, cost estimates, and economic benefits. The distance to the nearest transmission or distribution line allows for calculation of a cost of transmission, but does not necessarily indicate that an interconnection can be made with the transmission line. Further site specific analysis for transmission would be needed if a site is pursued.

To estimate power potential, the tool develops flow and net head exceedance curves and sets design flow and design net head at a 30 percent exceedance level to calculate installed capacity. The tool then assigns a Pelton, Kaplan, Francis, or low-head (modified Francis) turbine based on the installed head and flow capacity and general turbine operating ranges. Non-traditional turbine technologies for very low heads or flows were not considered. Monthly and annual energy generation is calculated based on the selected turbine, turbine efficiency, and daily hydrologic data.

For the economic calculations, cost curves are embedded in the model to estimate total construction, development (includes construction, licensing and mitigation), and annual operation and maintenance costs. Economic benefits from power generation are based on current and forecasted energy prices. The benefits analysis also incorporates green incentives available from existing Federal and state programs. After estimating annual and total benefits and costs, the tool calculates a benefit cost ratio and internal rate of return (IRR) for each site as an indicator of economic feasibility. The benefit cost ratio and IRR are based on a 50 year period of analysis using the Fiscal Year 2010 Federal discount rate of 4.375 percent. The interest rate can be easily modified in the Hydropower Assessment Tool.

The Hydropower Assessment Tool is intended for use as a preliminary evaluation of potential hydropower sites and is valuable for informational purposes to support further evaluation of a potential site. The tool allows for the user to change assumptions, such as turbine selection, flow exceedance, or costs, if additional site specific information is available. The tool does not substitute the need for a feasibility study.

Site Evaluation and Results

Table ES-2 summarizes economic results, indicated by number of sites within specified benefit cost ratio ranges, and total power capacity and energy production for the 191 sites with hydropower potential. Sites with lower benefit cost ratios would be less economic to develop. In general, sites with a higher benefit cost ratio had higher installed capacities (measured in megawatts [MW]) and more annual energy production potential (measured in megawatt hours [MWh]).

Benefit Cost Ratio Range	No. of Sites	Total Installed Capacity (MW)	Total Annual Production (MWh)
0 to 0.25	62	10.4	35,041
0.25 to 0.5	35	15.7	57,955
0.5 to 0.75	24	17	67,375
0.75 to 1.0	27	40.5	147,871
1.0 to 2.0	36	79.9	375,353
Greater than or equal to 2.0	7	104.8	484,653
Total	191	268.3	1,168,248

 Table ES-2 Sites with Hydropower Potential within Benefit Cost Ratio

 (with Green Incentives) Ranges

Table ES-3 (at the end of this summary) shows 70 sites with benefit cost ratios (with green incentives) greater than 0.75. Although the standard for economic viability is a benefit cost ratio of greater than 1.0, sites with benefit cost ratios of 0.75 and higher were ranked given the preliminary nature of the analysis. The results show a potential of approximately 225MW of installed capacity and 1.0 million MWh of energy could be produced annually at existing Reclamation facilities if all sites with a benefit cost ratio greater than 0.75 are summed. Individual sites range from a 125 kW installed capacity to about 26 MW installed capacity.

Because of the uncertainty in green energy incentive prices, benefit cost ratios with and without green incentives are calculated. Of the 17 western states, state level green incentive programs were identified in Arizona, California, and Washington. Federal green incentives are also available. The benefits analysis includes available state and Federal green incentives to calculate economic benefits, and the resulting benefit cost ratios.

The Resource Assessment considers potential regulatory constraints related to water supply, fish and wildlife considerations, and effects on Native Americans,

water quality, and recreation. Constraints can either block development completely or add significant costs for mitigation, permitting, or further investigation of the site. Table ES-3 identifies if a potential constraint was applicable to a site. Mitigation costs were added to the total development costs of the site for any applicable constraints. For this preliminary analysis, constraints and mitigation costs are identified and added primarily to indicate that a potential constraint exists and should be further investigated if the site is pursued for development. Additional constraints could be present at any of the sites identified in this analysis. Depending on specific environmental and regulatory issues at a particular site, costs could differ significantly from those used in the analysis or development may be prohibited. As mentioned above, costs in the Hydropower Assessment Tool can be easily modified and rerun to estimate costs.

The last column in Table ES-3 identifies the confidence level in the hydrologic data collected for the site. It is important to note that results for sites with low confidence data may not be as reliable as sites with higher confidence data. There are ten sites with low confidence data in the table, including the third and fourth ranked sites.

The site evaluation results are based on design flow and design head set at 30 percent exceedance level. Different exceedance percentages can be selected for sizing the hydropower plant, which could increase or decrease the plant capacity. Changing the plant capacity would effectively change the amount of energy the plant can generate and the costs to develop, operate, and maintain the plant. Reclamation performed a sensitivity analysis on varying the exceedance level for sites with benefit cost ratios close to or greater than 1.0 and sites with seasonal flows, which typically had a benefit cost ratio much lower than 1.0. For most sites that would be economical for hydropower development at the 30 percent exceedance level, the benefit cost ratio decreased at the 20 percent exceedance level, indicating that the costs of adding capacity were rising faster than the revenues (energy production) of the added capacity. For sites with seasonal flows, designing the plant at a lower exceedance level would slightly increase the benefit cost ratio relative to the 30 percent exceedance design because of increased revenues from more energy production, but the plant would continue to be uneconomical to develop (the benefit cost ratio remains less than 1.0; and, for most seasonal sites, less than 0.75).

The Resource Assessment consistently used a 30 percent exceedance, which resulted in more sites having higher benefit cost ratios. Using a 20 percent exceedance could have resulted in higher installed capacities and more energy generation, but the number of economically feasible projects, based on the benefit cost ratios, would decrease. During feasibility analysis of a potential site, the developer should analyze different plant sizes to evaluate the most economic plant size.

Conclusions

The Resource Assessment concludes that substantial hydropower potential exists at Reclamation sites. Some site analyses are based on over 20 years of hydrologic data that indicate a high likelihood of generation capability. Table ES-3 presents 70 of the 530 sites that could be economically feasible to develop based on available data and study assumptions; of which 36 sites used high confidence data for the analysis.

The results of the Resource Assessment will be of value to public municipalities and private developers seeking to add power to their load area or for investment purposes. It provides a valuable database in which potential sites can be viewed to help determine whether or not to proceed with a feasibility study. For many of these Reclamation sites, development would proceed under a Lease of Power Privilege Agreement as opposed to a Federal Energy Regulatory Commission (FERC) license. A lease of power privilege (lease) is a contractual right of up to 40 years given to a non-Federal entity to use a Reclamation facility for electric power generation. It is an alternative to federal power development where Reclamation has the authority to develop power on a federal project. The selection of a Lessee is done through a public process to ensure fair and open competition though preference is given through the Reclamation Project Act of 1939 to municipalities, other public corporations or agencies, and also to cooperatives and other nonprofit organizations financed through the Rural Electrification Act of 1936. In order to proceed under a lease, the project must have adequate design information, satisfactory environmental analysis/impacts, and cannot be detrimental to the existing project. Some sites in the analysis are already being pursued by public or private entities. Reclamation does not intend to interfere with existing plans for site development. Reclamation selected sites for this analysis that do not have existing hydropower facilities; although some may have FERC preliminary permits issued. The reports notes sites that have a FERC preliminary permit issued or are being pursued by other means.

The results could also be used to support an incentive program for hydropower as a renewable energy source. A large number of projects fall in the gray area of being economically feasible. The Resource Assessment shows that green incentives for hydropower development are largely not available in individual states, but, when they are, can contribute substantially to the economic viability of a project. For example, state-sponsored programs in Arizona and California can, in some instances, double the benefit cost ratio for a site. Washington also has a green incentive program that can contribute to the economic viability of hydropower development. For the 14 remaining states, renewable energy incentives for hydropower are not available at the state level. A Federal incentive program exists, but does not contribute significantly to economic benefits. Further, if sites are developed by Reclamation, they would not be eligible for the Federal incentive, but could qualify for state-sponsored incentives. This analysis could be useful in promoting hydropower at existing facilities as a low cost and low impact renewable energy source and determining incentives that would be necessary to stimulate investment.

The Hydropower Assessment Tool is also a valuable product of this analysis. The tool provides a first step in identifying if sites should be further analyzed or if there is clearly no hydropower potential at the site. The tool requires relatively simple inputs of daily flows, head water elevations, and tail water elevation and the results are valid information on potential hydropower production and economic viability. Any site with available flow, head and tail water elevation data can be analyzed with the tool. It is a time-saving, effective tool to determine if a site should be further pursued for hydropower development.

Site ID	Site Name	State	Project	Installed Capacity (kW)	Annual Production (MWh)	Benefit Cost Ratio With Green	Benefit Cost Ratio Without Green	Constraint (see legend)	Data Confidence
LC-6	Bartlett Dam	Arizona	Salt River Project	7,529	36,880	3.5	2.25	F&W REC	Medium
GP-146	Yellowtail Afterbay Dam	Montana	PSMBP - Yellowtail	9,203	68,261	3.05	2.86	-	Medium
UC-141	Sixth Water Flow Control	Utah	Central Utah Project - Bonneville Unit	25,800	114,420	3.02	2.84	F&W REC	Medium
LC-20	Horseshoe Dam	Arizona	Salt River Project	13,857	59,854	2.98	1.93	F&W REC	Low
GP-125	Twin Buttes Dam	Texas	San Angelo	23,124	97,457	2.61	2.46	-	Low
UC-185	Upper Diamond Fork Flow Control Structure	Utah	Central Utah Project - Bonneville Unit	12,214	52,161	2.36	2.22	F&W REC	Medium
GP-99	Pueblo Dam	Colorado	Fryingpan-Arkansas	13,027	55,620	2.34	2.2	F&W	High
MP-30	Prosser Creek Dam	California	Washoe	872	3,819	1.98	1.06	-	High
PN-6	Arthur R. Bowman Dam	Oregon	Crooked River	3,293	18,282	1.9	1.79	REC	High
UC-89	M&D Canal-Shavano Falls	Colorado	Uncompahgre	2,862	15,419	1.88	1.77	-	Low
GP-56	Huntley Diversion Dam	Montana	Huntley	2,426	17,430	1.86	1.74	-	Medium
MP-2	Boca Dam	California	Truckee Storage	1,184	4,370	1.68	0.89	REC; H&A	High
PN-31	Easton Diversion Dam	Washington	Yakima	1,057	7,400	1.68	1.58	-	High
UC-159	Spanish Fork Flow Control Structure	Utah	Central Utah Project - Bonneville Unit	8,114	22,920	1.66	1.57	F&W	Medium
LC-21	Imperial Dam	Arizona- California	Boulder Canyon Project	1,079	5,325	1.61	1.05	F&W	Low
GP-46	Gray Reef Dam	Wyoming	PSMBP - Glendo	2,067	13,059	1.58	1.49	FP	High
MP-8	Casitas Dam	California	Ventura River	1,042	3,280	1.57	0.84	-	High
UC-49	Grand Valley Diversion Dam	Colorado	Grand Valley	1,979	14,246	1.55	1.45	F&W REC; H&A	Medium
UC-52	Gunnison Tunnel	Colorado	Uncompahgre	3,830	19,057	1.55	1.45	-	Medium
GP-23	Clark Canyon Dam	Montana	PSMBP - East Bench	3,078	13,689	1.52	1.42	WQ	High
UC-19	Caballo Dam	New Mexico	Rio Grande	3,260	15,095	1.45	1.36	F&W	Low

Table ES-3 Sites with Benefit Cost Ratios (with Green Incentives) Greater than 0.75

Site ID	Site Name	State	Project	Installed Capacity (kW)	Annual Production (MWh)	Benefit Cost Ratio With Green	Benefit Cost Ratio Without Green	Constraint (see legend)	Data Confidence
UC-147	South Canal, Sta. 181+10, "Site #4"	Colorado	Uncompahgre	3,046	15,536	1.44	1.35	-	Medium
PN-95	Sunnyside Dam	Washington	Yakima	1,362	10,182	1.43	1.35	H&A	Medium
UC-144	Soldier Creek Dam	Utah	Central Utah Project - Bonneville Unit	444	2,909	1.39	1.31	F&W	High
GP-52	Helena Valley Pumping Plant	Montana	PSMBP - Helena Valley	2,626	9,608	1.38	1.29	-	High
UC-131	Ridgway Dam	Colorado	Dallas Creek	3,366	14,040	1.35	1.27	F&W	High
GP-41	Gibson Dam	Montana	Sun River	8,521	30,774	1.32	1.23	-	High
UC-146	South Canal, Sta 19+ 10 "Site #1"	Colorado	Uncompahgre	2,465	12,576	1.32	1.24	-	Medium
UC-51	Gunnison Diversion Dam	Colorado	Uncompahgre	1,435	9,220	1.28	1.2	F&W	Medium
PN-88	Scootney Wasteway	Washington	Columbia Basin	2,276	11,238	1.26	1.18	-	Low
UC-150	South Canal, Sta.106+65, "Site #3"	Colorado	Uncompahgre	2,224	11,343	1.26	1.18	-	Medium
GP-126	Twin Lakes Dam (USBR)	Colorado	Fryingpan-Arkansas	981	5,648	1.24	1.17	F&W	High
GP-95	Pathfinder Dam	Wyoming	North Platte	743	5,508	1.23	1.16	REC; FP	High
UC-162	Starvation Dam	Utah	Central Utah Project - Bonneville Unit	3,043	13,168	1.23	1.15	F&W	High
LC-15	Gila Gravity Main Canal Headworks	Arizona	Gila	223	1,548	1.17	0.75	-	Medium
GP-43	Granby Dam	Colorado	Colorado-Big Thompson	484	2,854	1.16	1.09	F&W	High
MP-32	Putah Diversion Dam	California	Solano	363	1,924	1.16	0.62	F&W	Medium
UC-179	Taylor Park Dam	Colorado	Uncompahgre	2,543	12,488	1.12	1.05	F&W	High
GP-136	Willwood Diversion Dam	Wyoming	Shoshone	1,062	6,337	1.1	1.03	FP	High
GP-93	Pactola Dam	South Dakota	PSMBP - Rapid Valley	596	2,725	1.07	1.01	REC	High
UC-57	Heron Dam	New Mexico	San Juan-Chama	2,701	8,874	1.06	1	F&W	Medium
UC-154	Southside Canal, Sta 171+ 90 thru 200+ 67 (2 canal	Colorado	Collbran	2,026	6,557	1.05	0.99	-	Low

Site ID	Site Name	State	Project	Installed Capacity (kW)	Annual Production (MWh)	Benefit Cost Ratio With Green	Benefit Cost Ratio Without Green	Constraint (see legend)	Data Confidence
	drops)								
UC-148	South Canal, Sta. 472+00, "Site #5"	Colorado	Uncompahgre	1,354	6,905	1.05	0.98	-	Medium
PN-34	Emigrant Dam	Oregon	Rogue River Basin	733	2,619	0.99	0.93	-	High
UC-177	Syar Tunnel	Utah	Central Utah Project - Bonneville Unit	1,762	7,982	0.99	0.93	F&W REC	Medium
PN-104	Wickiup Dam	Oregon	Deschutes	3,950	15,650	0.98	0.92	REC	High
UC-174	Sumner Dam	New Mexico	Carlsbad	822	4,300	0.98	0.92	F&W	Medium
GP-34	East Portal Diversion Dam	Colorado	Colorado-Big Thompson	283	1,799	0.96	0.9	-	High
PN-12	Cle Elum Dam	Washington	Yakima	7,249	14,911	0.94	0.89	-	High
PN-80	Ririe Dam	Idaho	Ririe River	993	3,778	0.94	0.89	-	High
UC-155	Southside Canal, Sta 349+ 05 thru 375+ 42 (3 canal drops)	Colorado	Collbran	1,651	5,344	0.93	0.88	-	Low
PN-87	Scoggins Dam	Oregon	Tualatin	955	3,683	0.92	0.86	-	High
UC-132	Rifle Gap Dam	Colorado	Silt	341	1,740	0.92	0.86	F&W	High
GP-5	Angostura Dam	South Dakota	PSMBP Cheyenne Diversion	947	3,218	0.9	0.84	-	Low
MP-17	John Franchi Dam	California	Central Valley	469	1,863	0.9	0.48	F&W	Low
GP-39	Fresno Dam	Montana	Milk River	1,661	6,268	0.88	0.82	-	High
GP-129	Virginia Smith Dam	Nebraska	PSMBP - North Loup	1,607	9,799	0.88	0.82	-	Low
PN-59	McKay Dam	Oregon	Umatilla	1,362	4,344	0.88	0.83	-	High
GP-128	Vandalia Diversion Dam	Montana	Mild River	326	1,907	0.87	0.82	-	Medium
PN-49	Keechelus Dam	Washington	Yakima	2,394	6,746	0.87	0.81	REC	High
PN-44	Haystack	Oregon	Deschutes	805	3,738	0.85	0.8	-	High
UC-72	Joes Valley Dam	Utah	Emery County	1,624	6,596	0.85	0.8	F&W REC	High
UC-145	South Canal Tunnels	Colorado	Uncompahgre	884	4,497	0.84	0.79	-	Medium

Table ES-3 Sites with Benefit Cost Ratios (with Green Incentives) Greater than 0.75

Site ID	Site Name	State	Project	Installed Capacity (kW)	Annual Production (MWh)	Benefit Cost Ratio With Green	Benefit Cost Ratio Without Green	Constraint (see legend)	Data Confidence
MP-24	Marble Bluff Dam	Nevada	Washoe	1,153	5,624	0.83	0.78	H&A	High
GP-92	Olympus Dam	Colorado	Colorado-Big Thompson	284	1,549	0.82	0.77	-	High
GP-117	St. Mary Canal - Drop 4	Montana	Milk River	2,569	8,919	0.82	0.77	H&A	High
GP-42	Glen Elder Dam	Montana	Sun River	1,008	3,713	0.81	0.76	-	High
UC-117	Paonia Dam	Colorado	Paonia	1,582	5,821	0.79	0.74	F&W	Medium
PN-48	Kachess Dam	Washington	Yakima	1,227	3,877	0.77	0.72	-	Medium
GP-118	St. Mary Canal - Drop 5	Montana	Milk River	1,901	7,586	0.75	0.70	H&A	High

Table ES-3 Sites with Benefit Cost Ratios (with Green Incentives) Greater than 0.75

Constraint Legend:

Fish and Wildlife - F&W; Recreation - REC; Historical and Archaeological - H&A ; Water Quality - WQ; Fish Passage - FP

This page intentionally left blank.

Chapter 1 Introduction

The Bureau of Reclamation (Reclamation) is the largest water supplier in the United States, owning and operating 188 water projects across the western states with dams, reservoirs, canals, diversion dams, pipelines, and other distribution infrastructure. Reclamation also produces hydropower through 58 power plants and 194 generating units in operation at Reclamation-owned facilities. Reclamation is the second largest producer of hydropower in the U.S., behind the U.S. Army Corps of Engineers (Corps); however, many opportunities remain at existing Reclamation facilities to produce additional hydropower. Recognizing the current national emphasis on renewable energy and its extensive existing water infrastructure, Reclamation is undertaking the *Hydropower Resource Assessment at Existing Reclamation Facilities* (Resource Assessment) to evaluate hydropower development potential to contribute to nationwide renewable energy strategies.

1.1 Background

Historically, the primary purposes of Reclamation projects have been agricultural irrigation and provision of water for municipal and industrial use. Because of water infrastructure facilities, hydropower has been prominent in Reclamation's projects. According to the Federal *Economic and Environmental Principles and Guidelines for Water and Related Land Resources Implementation Studies* (P&Gs), power can be included in multipurpose Federal Reclamation projects when it is in the national interest, economically justified, and feasible by engineering and environmental standards. In past studies, hydropower has often shown clear economic benefits and financial capability of repaying its share of the Federal investment. Reclamation currently generates over 40 billion kilowatt hours (kWh) of hydroelectric energy at existing facilities.

Recent Federal policies and legislation focus on moving the nation towards a cleaner energy economy that includes developing environmentally appropriate renewable energy projects involving solar, wind and waves, geothermal, biofuels, and hydropower. The 2010 Federal Memorandum of Understanding (MOU) for Hydropower and the Energy Policy Act of 2005, described below, direct Reclamation to evaluate development of new hydropower projects at Federally-owned facilities and upgrade or rehabilitate existing hydropower generation facilities, as a contribution to the nation's clean energy goals.

State policies are also starting to encourage renewable energy development. Many states are implementing financial incentives programs targeted to developers of renewable energy; however, hydropower is not always eligible for financial incentives. Most programs focus on solar, wind, and geothermal power sources. Incentive programs vary by state, but provide a financial mechanism to make hydropower development more economical.

1.1.1 Federal Memorandum of Understanding for Hydropower

On March 24, 2010, an MOU for Hydropower was signed between the Department of the Interior (DOI), the Department of Energy (DOE), and the Department of Army (DOA) that represents a new approach to hydropower development – a strategy that can increase the production of clean, renewable power while avoiding or reducing environmental impacts and enhancing the viability of ecosystems. By signing the MOU, the Federal agencies agree to focus on increasing energy generation at Federally-owned facilities and explore opportunities for new development of low-impact hydropower. The MOU aims to increase communication among Federal agencies and strengthen the long-term relationship among them to prioritize the generation and development of sustainable hydropower.

Objectives of the MOU include:

- Identify specific Federal facilities that are well-suited as sites for sustainable hydropower;
- Upgrade facilities and demonstrate new technologies at existing hydropower locations;
- Coordinate research and development on advanced hydropower technologies;
- Increase hydropower generation through low-impact and environmentally sustainable approaches;
- Integrate policies at the Federal level; and
- Collaborate to identify total incremental hydropower resources at federal facilities.

1.1.2 Section 1834 of the Energy Policy Act of 2005

Section 1834 of the Energy Policy Act of 2005 (Section 1834) required the DOI, DOA, and DOE to "jointly conduct a study assessing the potential for increasing electric power production at federally owned or operated water regulation, storage, and conveyance facilities." The agencies completed the study entitled "Potential Hydroelectric Development at Existing Federal Facilities" (1834 Study) in May 2007. The 1834 Study inventoried sites that have potential, with or without modification, of producing additional hydroelectric power for public consumption. The initial sites for the DOI included 530 sites at Reclamation facilities and 123 sites at Bureau of Indian Affairs facilities. The 1834 Study

also analyzed 218 sites at Corps facilities. The Corps represented the DOA in the study.

The analysis in the 1834 Study applied three screenings to identify sites with the most hydropower development potential. Sites were screened out if analysis indicated that sites 1) produced less than 1 megawatt (MW) capacity or had less than 10 feet of hydraulic head; 2) conflicted with water and land use legislations; and 3) had a calculated benefit cost ratio less than 1.0. In the 1834 Study, 80 of the 530 Reclamation sites made it to the third screening step and had a power production and benefit-cost analysis completed. Of the 80 sites, 6 sites had a benefit cost ratio greater than 1.0. The sites were Prosser Creek Dam, Rye Patch Dam, and Bradbury Dam in the Mid-Pacific Region, Helena Valley Pumping Plant and Yellowtail Afterbay Dam in the Great Plains Region, and the Sixth Water Flow Control Structure in the Upper Colorado Region.

In summary, the 1834 Study provided an indication of remaining potential for hydropower development on Federal facilities. With further investigation, these sites may be viable to produce hydropower in the future.

1.1.3 Renewable Energy Incentive Programs

Many state governments have reported goals of increasing the percentage of renewable energy in the state's electricity portfolio. To help meet this goal, states are implementing financial incentive programs to encourage development and use of renewable energy. Incentives are available in various forms. Some states offer performance-based incentives that generally include a utility providing cash payment to a renewable energy developer based on the amount of kWh of renewable energy generated. Most state programs are installation-based meaning developers receive a one-time payment, rebate, or tax credit for installing a renewable energy facility. Although most states have implemented renewable energy programs, the eligibility of hydropower to receive financial renewable energy incentives, in particular, is very limited.

The Federal government also offers renewable energy tax incentives. The primary incentives available for renewable energy on a federal basis are the Production Tax Credit, a performance-based credit, or Investment Tax Credit, an installation-based credit. Federal incentives apply to hydropower.

1.2 Purpose and Objectives

Due to increased Federal and state renewable energy interests, Reclamation is reevaluating potential hydropower development at Reclamation-owned facilities. Numerous sites analyzed in the 1834 Study were either removed by the various screening processes or were not found to have net benefits but are actively being developed by private entities. Some sites have been developed, including Jordanelle Dam in Utah, Pineview Dam in Utah, Arrowrock Dam in Idaho, Quincy Chute in Washington, and others. Increased power value forecasts and renewable energy incentives could be enticing private entities to pursue hydropower projects. As a result, the Commissioner of Reclamation has directed the Power Resources Office to update and expand the scope and economic analysis of the original 1834 Study.

The *Hydropower Resource Assessment at Existing Reclamation Facilities* has the following study objectives:

- Assess the potential for developing new hydropower capacity and generation at existing Reclamation facilities.
- Determine the economic viability of hydropower production at existing Reclamation facilities.
- Document economically viable opportunities for future hydroelectric power development.

The assessment is mainly targeted towards providing preliminary information for municipalities and private developers that could further evaluate the potential to increase hydropower production at Reclamation sites. Developers could use the information provided in this assessment to focus more detailed analysis on sites that demonstrate a reasonable potential for being economically and financially viable.

1.3 Resource Assessment Overview

The 530 Reclamation-owned sites identified in the 1834 Study are used as the starting point for the Resource Assessment. The sites are spread throughout Reclamation's five regions (Great Plains, Lower Colorado, Mid-Pacific, Pacific Northwest, and Upper Colorado) covering 17 western states. Figure 1-1 shows the distribution of the 530 sites, which makes up the assessment study area.

Rather than applying a screening process as used in the 1834 Study, the Resource Assessment evaluates all 530 sites, including those with low hydraulic head, low capacity, or regulatory conflicts, as potential for new hydropower development. For this assessment, Reclamation developed and applied the Hydropower Assessment Tool, an Excel-based model, to evaluate power potential and economic benefits and costs of each site. In addition to analysis of each site, the Resource Assessment also added some key components to the analysis not included in the 1834 Study, including:

- Green incentives in the economic benefits analysis.
- Turbine types and efficiency specified for each site as indicated by the available hydraulic head and flow.

- Actual or estimated distances and costs of transmission lines.
- Calculation of the internal rates of return.
- Maps of each site to identify locations related to potential sensitive water and land use areas that may preclude or constrain development.

The Resource Assessment provides a "big picture" analysis of potential hydropower sites. Because of the geographic scope of the analysis, many general assumptions had to be applied to determine hydropower production potential and estimate economic benefits and costs. The analysis provides preliminary comparison among potential sites, which gives Reclamation further understanding of hydropower development potential at existing facilities. All sites would have to be investigated in further detail through feasibility, environmental, design, and permitting studies.

1.4 Public Input

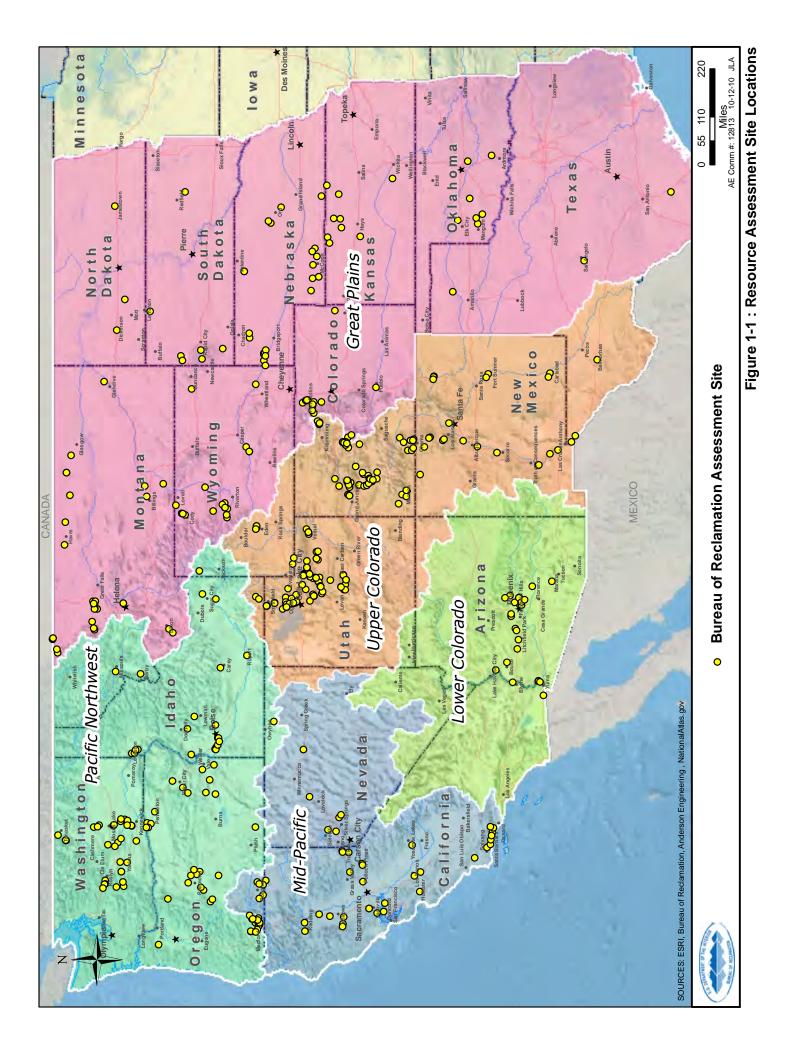
The public has had the opportunity to provide input and comments on the Resource Assessment Draft Report. As part of the public process, Reclamation published a notice in the Federal Register on November 4, 2010 soliciting public comments on the draft report. The public comment period was scheduled through December 3, 2010. On December 28, 2010, Reclamation reissued a notice in the Federal Register extending the comment period through January 27, 2011, in response to public requests for an extension. Appendix G summarizes and includes public comments received.

1.5 Report Content

This report is organized into the following chapters.

Chapter 1 Introduction: Presents the background, purpose and objectives, and overview for the *Hydropower Resource Assessment at Existing Reclamation Facilities*.

Chapter 2 Hydropower Site Data Collection: Discusses methods to collect head water elevation, tail water elevation, and flow data for the 530 sites in study area.


Chapter 3 Site Analysis Methods and Assumptions: Summarizes methods to estimate potential energy generation at each site, economic benefits related to power production and green incentives, site development and operation and maintenance (O&M) costs, and potential environmental and regulatory constraints.

Chapter 4 Hydropower Assessment Tool: Describes components and application of the Hydropower Assessment Tool developed for this study to evaluate power production potential, benefit cost ratio, and internal rate of return (IRR) of potential hydropower sites.

Chapter 5 Site Evaluation Results: Presents results of the Resource Assessment, organized by Reclamation region, and sensitivity analyses.

Chapter 6 Conclusions: Summarizes study results and conclusions, and uses for future hydropower analyses.

Chapter 7 References: Lists references used to develop the report.

This page intentionally left blank.

Chapter 2 Hydropower Site Data Collection

The Resource Assessment evaluates potential hydropower development at the 530 Reclamation facilities inventoried in the 1834 Study. Table 2-1 summarizes the number of sites in each Reclamation region. For analysis purposes, each site is labeled with the region initials and a number, based on alphabetical order of the sites in the region. Table 2-4 (at the end of this section) lists the sites and identification numbers and Appendix A lists the sites, state, Reclamation project, and assigned site identification numbers.

Reclamation Region	Number of Sites	Site Identification Numbering			
Great Plains (GP)	146	GP-1 to GP-146			
Lower Colorado (LC)	30	LC-1 to LC-30			
Mid-Pacific (MP)	44	MP-1 to MP-44			
Pacific Northwest (PN)	105	PN-1 to PN-105			
Upper Colorado (UC)	205	UC-1 to UC-205			
Total	530	-			

Table 2-1 Number of Sites in Each Reclamation Region

Extensive data is needed for a complete hydropower analysis of each site, including site coordinates, proximity to transmission lines, daily flows for at least a 1-year period, and head water and tail water elevations. This section describes data necessary to complete the analysis, data sources, and confidence levels in the data collected.

Data availability varied per site. For the majority of sites, a complete data set, as listed above, was available. For some sites, a complete data set was not available after extensive data collection efforts. The sites with incomplete data were still tested for hydropower potential using available data; however, the analysis indicates that the data confidence level is low. Further analysis, including site visits and monitoring, which are out of the scope of this analysis, could identify potential hydropower development at sites with currently low confidence data.

2.1 Site Location and Proximity Data

Reclamation operates 188 projects within the 17 western states. Potential hydropower sites are distributed among these projects and states. The 1834 Study identified potential hydropower sites by name of the canal, dam, siphon, or other infrastructure, the associated Reclamation project, and the state.

Site coordinates were also collected for the majority of sites. Figures 2-1 through 2-10 show the distribution and location of sites, with available coordinate data, for each region. Regions are split among the figures because of the region size and to better show site locations.

The Idaho National Engineering and Environmental Laboratory (INL) provided proximity data related to site locations, based on the site coordinates. Proximity data include distance of site to nearest population center, road, substation, and transmission line. INL also provided the voltage of nearest transmission or distribution lines, power line operator and substation name.

The distance from the site to transmission line and transmission line voltage were used in estimating costs of potential hydropower development at a site. If INL did not have transmission data available for a particular site, a 5.0 mile default distance from the site to the transmission line was used in the analysis. This reflects an average transmission line distance based on the available data for the remainder of sites. The default transmission voltage value used was 115 kilo voltage (kV), which is considered an average kV for transmission lines. Data for transmission or distribution line kV provided by INL went from 35 kV up to 500 kV. The distance to the nearest transmission line does not necessarily indicate that an interconnection can be made with the transmission line. Further site specific analysis for transmission would be needed if a site is pursued. Chapter 3 discusses cost estimating methods and assumptions for transmission.

2.2 Site Hydrologic Data

Hydrologic data, including flow and net hydraulic head (net head), are necessary to calculate potential power generation at a site. Net head is the difference between head water and tail water elevations. Power generation can be estimated using the following formula:

Power [kW] = (Flow [cfs] * Net Head [feet] * Efficiency)/11.8¹

Flow, head water and tail water data are typically available from flow meter or gage measurements, reservoir elevations, and project design specifications. Efficiency is dependent on the turbine design capacity, operating capacity², and turbine type. Chapter 3 discusses efficiency assumptions used in the power generation analysis of the Hydropower Assessment Tool. The following sections describe flow and net head data required and available for the analysis.

¹11.8 is a constant factor that is a combination of a constant and unit conversion factors.

² Turbine design capacity is the nameplate design for the turbine and operating capacity is the nameplate capacity less losses due to operational conditions (changes in heads or flows).

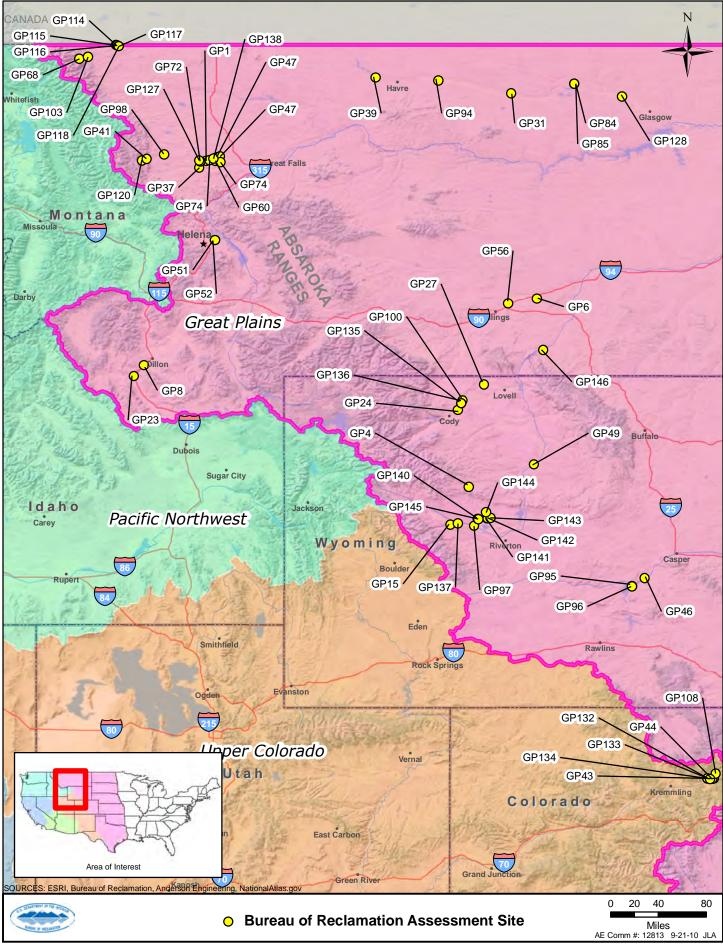


Figure 2-1 : Great Plains Region (Northwest) Assessment Site Location Map

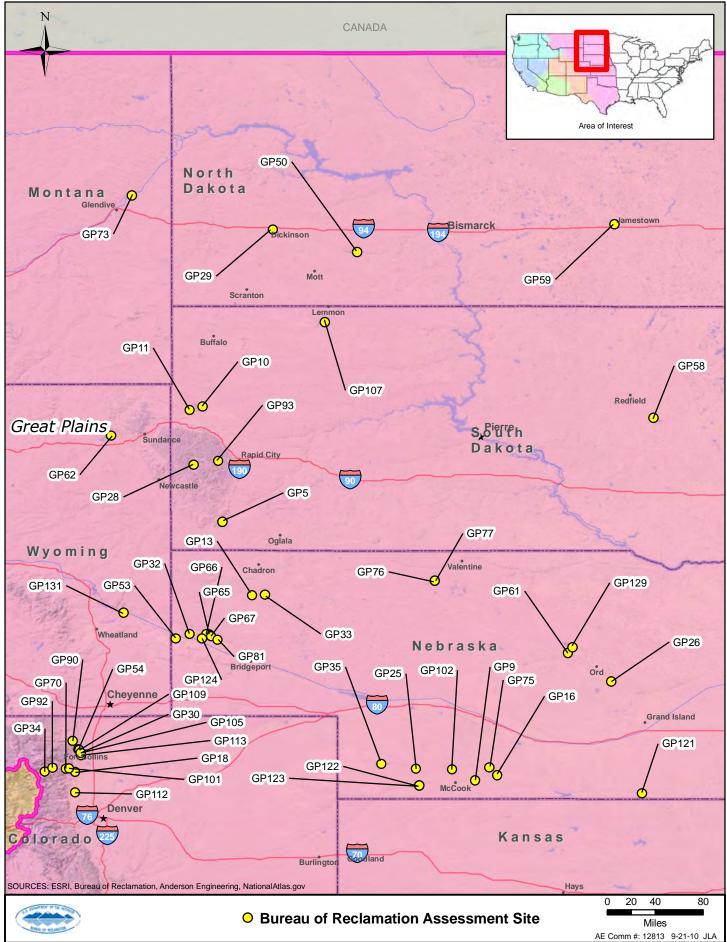


Figure 2-2 : Great Plains Region (Northeast) Assessment Site Location Map

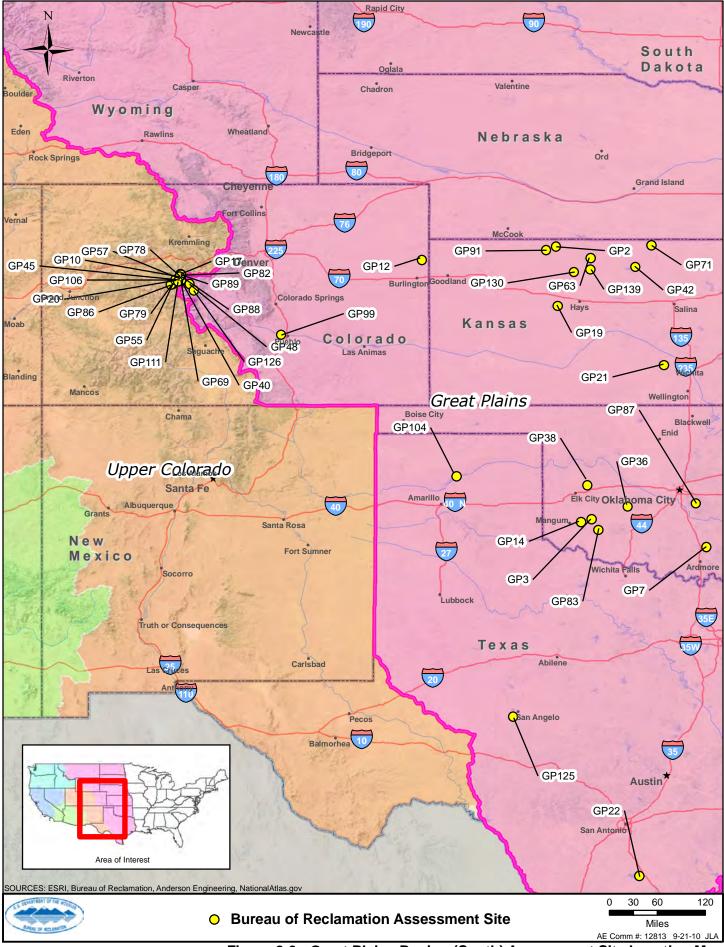


Figure 2-3 : Great Plains Region (South) Assessment Site Location Map

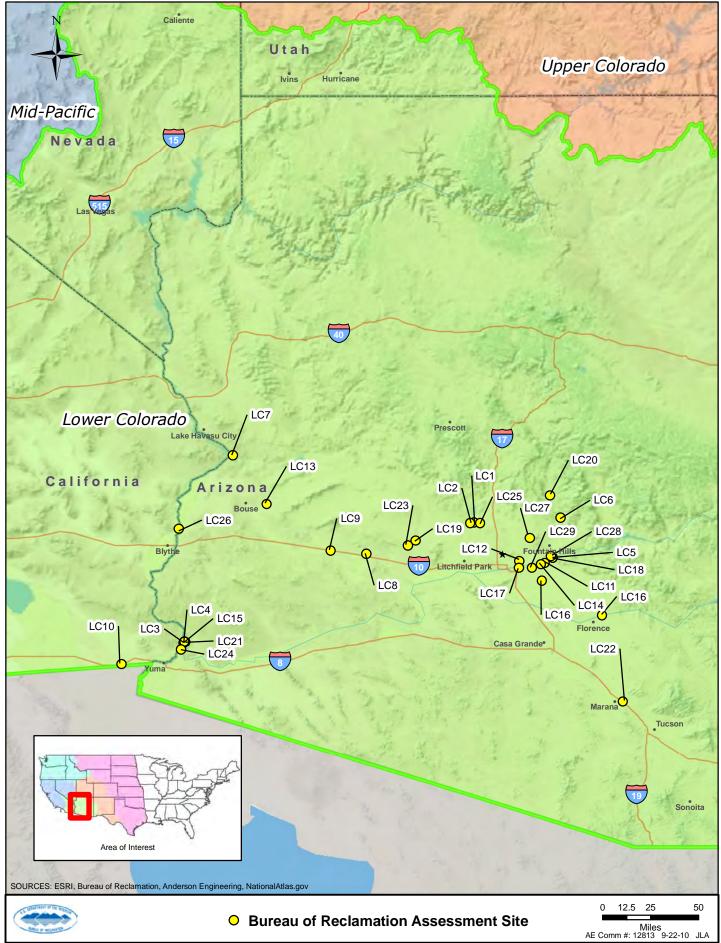


Figure 2-4 : Lower Colorado Region Assessment Site Location Map

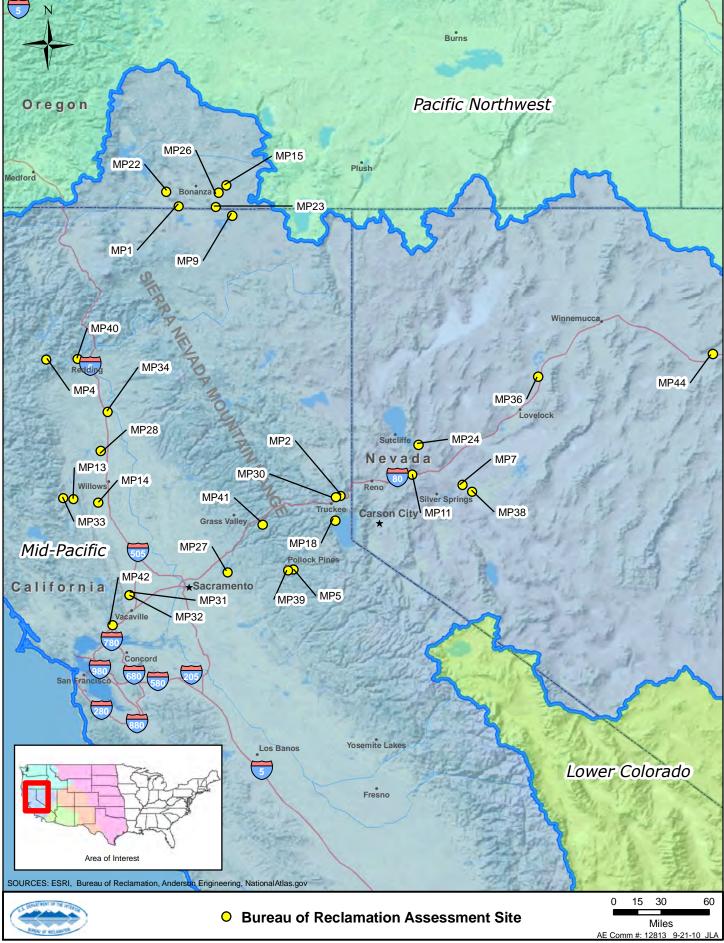


Figure 2-5 : Mid-Pacific Region (North) Assessment Site Location Map

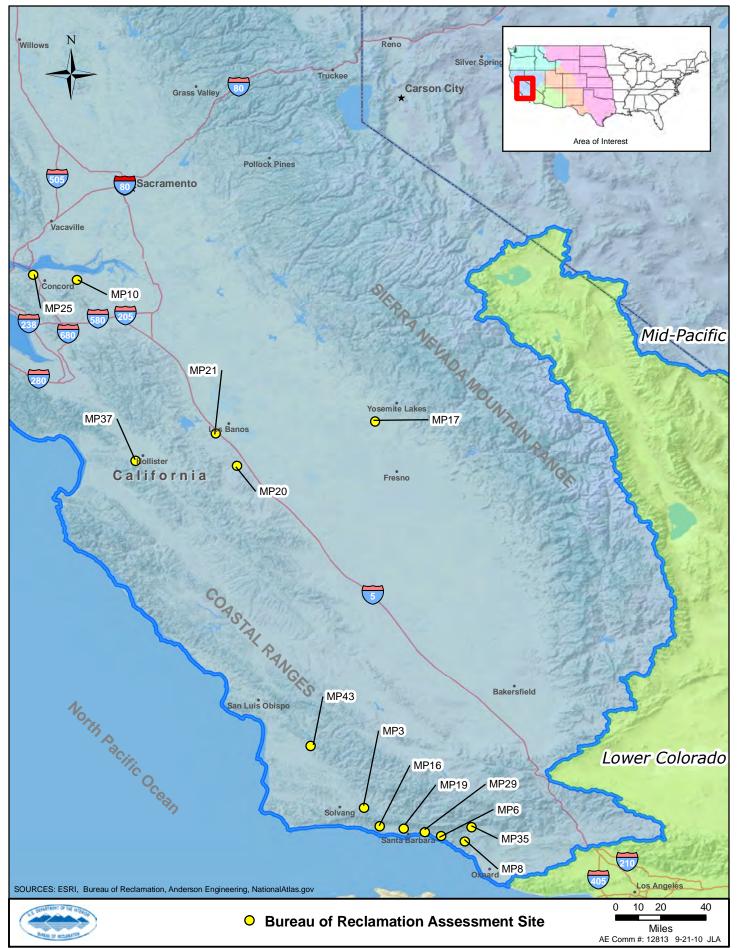


Figure 2-6 : Mid-Pacific Region (South) Assessment Site Location Map

Figure 2-7 : Pacific Northwest Region (West) Assessment Site Location Map

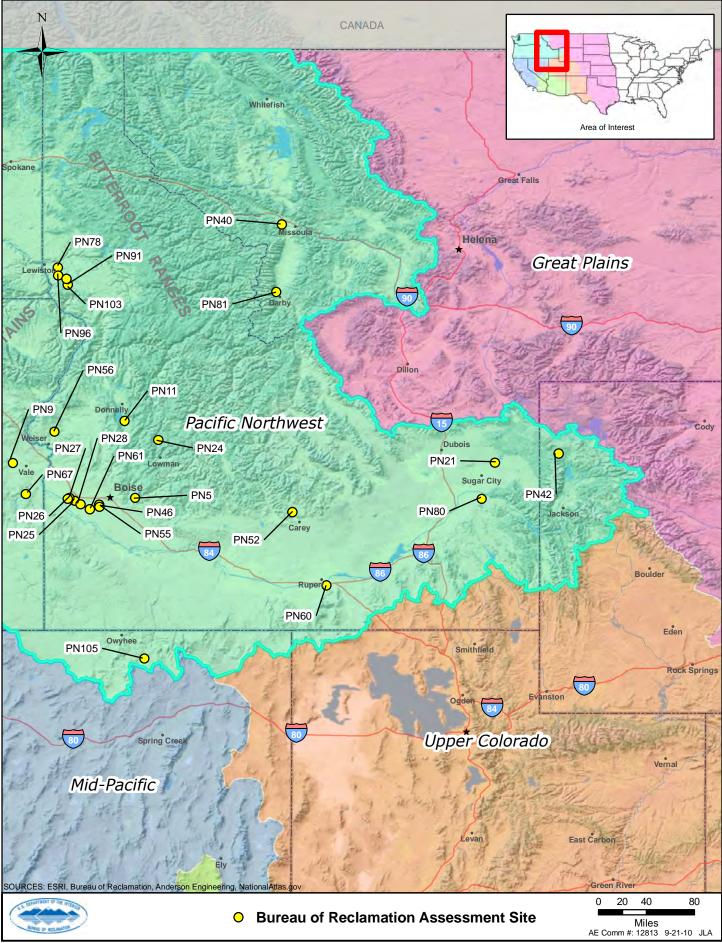


Figure 2-8 : Pacific Northwest Region (East) Assessment Site Location Map

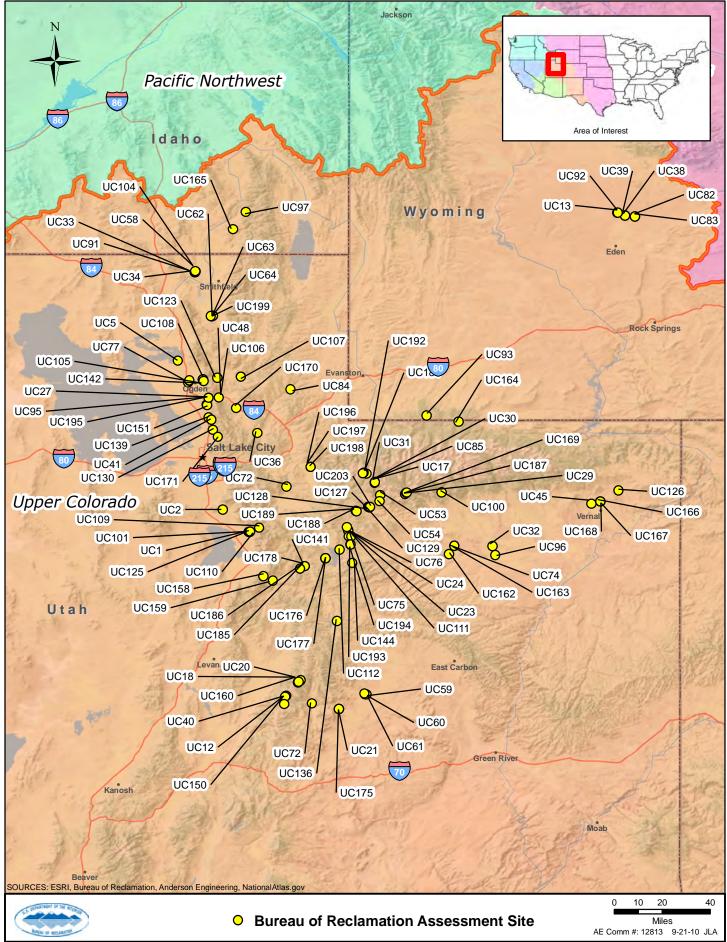


Figure 2-9 : Upper Colorado Region (West) Assessment Site Location Map



Figure 2-10 : Upper Colorado Region (East) Assessment Site Location Map

2.2.1 Flow

The analysis requires daily flow data measured in cubic feet per second (cfs). Historic flow records for the sites were used, as available. A minimum of 1 year of flow records was required for analysis. Sites with data that indicated zero flows would not have any power potential and were not carried forward in the analysis. The 530 sites analyzed are either dams/diversion dams (spillways or outlet works) or canal/tunnels or dikes/siphons, which have different flow regimes, as described in the following sections.

Reservoir Dams and Diversion Dams

Flows are typically measured as releases from the reservoir or diversions from a main canal or water way. Some of the diversion dams in the analysis are used for irrigation purposes and divert during the irrigation season; therefore, there are about 6 months of flow through the facility.

Flows through spillways or outlet works are typically monitored and recorded by the operating facilities; these data sources were used for the analysis. If no recorded data was available at the site, local knowledge was used to estimate the average flow through the facility. In some cases, particularly where the site uses flows from a flood control channel, the local representatives with knowledge of the site indicated that flow through the site was too sporadic or low for hydropower generation. In these instances, it was documented that the site had "no hydropower potential" and the site was not further analyzed.

Canals and Tunnels

Sites on canals and tunnels consist of elevation drops in the canal where head can be captured to generate power, or at a turnout or siphon used to move water from a larger canal into laterals or smaller canals for delivery. For some of these points of delivery, hydraulic head needs to be reduced to manage the flow of water. Similar to diversion dams, some of the canals and tunnels are also for irrigation purposes with only seasonal flows.

Flow records through canals and tunnels are usually recorded and monitored by Reclamation, U.S. Geological Survey (USGS) gages or by the operating entity. Reclamation owned canals are often operated and maintained by local irrigation districts, and in sites without readily available flow data, local authorities or irrigation districts were contacted for estimates on flow. In some instances, local districts had hard copy, written flow data that was used for the analysis. Local officials also provided information about some sites, particularly if they had sporadic or no flows for hydropower production. If the sites were determined to have no flows, it was noted to have "no hydropower potential" and was not further analyzed. For some canal and tunnel sites flow data were not available. Reclamation is conducting a separate study to further analyze canals and tunnels for hydropower potential, and this study will include collecting seasonal flow data and estimating net head through field investigations.

Dikes and Siphons

Some sites identified in the 1834 Study are dikes. Dikes typically impound water and do not have any flow releases. As a result, the dikes included in this study were assumed to have "no hydropower potential" because of zero flows. If a local representative had data indicating the site was not a typical dike and did have flows, then it was documented and carried forward in the analysis. The same approach applied to sites that were siphons.

2.2.2 Net Hydraulic Head

In addition to flow, sites require a positive net head for hydropower development. Net head is calculated as the difference between head water and tail water elevation. In general, a minimum of 3 feet of head is required to generate some hydropower. For some sites without historic records, local staff was able to provide information about available head at the sites. If sites had minimal head available (i.e., less than 3 feet), which occurred mostly in canals and tunnels, they were noted to have "no hydropower potential" due to the limited head available to move water within the canal or tunnel.

For reservoir dams and diversion dams, the recorded variable reservoir elevations at the site were used as the head water elevation and the tail water elevation was estimated from record drawings. Tail water elevation was a constant.

For most canals and tunnels, net head was a constant reflecting the elevation drop in the facilities. Some canals had similar elevation data as reservoirs where head water elevation varied and tail water elevation was constant.

2.3 Data for Canals and Tunnels

Many of the sites with further data needs are canals and tunnels. For some canals, maximum flow data design capacity was available, but seasonal variations in flow and net head data was not available. Seasonal flow distribution can significantly affect hydropower potential at a site. Many Reclamation canals are used for irrigation purposes and only carry flows during the irrigation season. Irrigation demands can also vary monthly, so canals may not be operating at peak capacity during the entire irrigation season. As a result, using design capacity flow data to calculate hydropower production is not an accurate representation of hydropower potential; daily flow data is best.

Further, hydropower potential cannot be estimated without data on net head. A large portion of the canals listed in the 1834 Study did not identify a specific drop or drops in the canal. Instead they simply listed the head differential along the entire stretch of the canal (sometimes over tens of miles). Elevation changes

in canals and tunnels can occur over short or long distances, and for some sites field investigations are needed to determine net head. The scope of this Resource Assessment does not include site visits for evaluating net head, and at the level of analysis of this study it was difficult to estimate potential changes in net head in these canals and tunnels. Reclamation is conducting a separate study to further analyze canals and tunnels for hydropower potential; this study includes collecting seasonal flow data and estimating net head through field investigations.

2.4 Data Sources

Various data sources provided flow, head water and tail water data for the analysis. For many sites, Reclamation owns the site but has transferred operation and maintenance to a local irrigation district. Therefore, local irrigation districts assisted in data collection.

- Hydromet Reclamation operates a network of automated hydrologic and meteorologic monitoring stations throughout the Pacific Northwest and Great Plains region. Hydromet collects remote field data and transmits it via satellite to provide real-time water management capability. Hydromet data is then integrated with other sources of information to provide streamflow forecasting and current runoff conditions for river and reservoir operations. Hydromet provides daily flow and elevation data.
- USGS Water Data USGS surface-water data includes more than 850,000 station years of time-series data that describe stream levels, streamflow, reservoir and lake levels, surface-water quality, and rainfall. The data are collected by automatic recorders and manual measurements. Data is available real-time, daily, monthly, and annually. Daily data is available at 25,290 surface water sites.
- 1834 Study Efforts to complete the 1834 Study included data collection for the 530 sites. Hydrologic data required for the 1834 Study is the same as data needed for the Resource Assessment. As a result of screening criteria, hydrologic data was not collected on many of the sites. However, sites that made it to the final phase of analysis in the 1834 Study had hydrologic data available.
- Project Data Book The *Water and Power Resources Service Project Data* (1981) (Project Data Book) contains descriptive and technical information for existing Reclamation water projects and facilities, including engineering designs. The Project Data Book was used to identify tail water elevation for most sites and head water elevation for some sites, if it were not available through other sources. Tail water

elevation was identified based on elevation of outlet works in the design drawings.

- Reclamation Area Offices' or Irrigation Districts' records Reclamation's area offices or irrigation districts operating the site maintain flow data for some sites. Daily data was provided in Excel files or in written records.
- Reclamation Area Offices' and Irrigation Districts' staff knowledge -Area office and irrigation district staff had local knowledge of some sites through operation, maintenance, or inspection and could provide general knowledge on flow and head data. This local information was applied, as necessary and applicable, to some sites and assigned a "low confidence" in the analysis (see below). Most often, staff knowledge was applied if the site did not have hydropower potential, as staff generally knew about flow magnitude and frequency and if head was available for hydropower production.

2.5 Data Collection and Confidence Levels

The Resource Assessment is very data-intensive. Reclamation made significant efforts to research and find hydrologic data for all 530 sites. Reclamation Technical Service Center staff coordinated closely with area offices in each region to collect data. Reclamation's field offices and local irrigation districts were also consulted for hydrologic data.

Best efforts were made to collect complete data for all 530 sites; however, some sites had missing or incomplete data. In most instances, incomplete data was manipulated in order to be adequate for the planning level of analysis in the Resource Assessment. As a result of the variability in data, Reclamation has assigned confidence ratings to data collected for each site based on the source, availability and consistency of data. Data was classified as high, medium, or low confidence, defined below. Table 2-1 shows the number of high, medium and low confidence data by region.

- **High Confidence**: assigned to data downloaded from Hydromet, USGS gages, or data collected from the previously conducted 1834 Study. Data has continuous daily data sets for a minimum of three years.
- **Medium Confidence**: assigned to data downloaded from Hydromet or USGS that had data gaps. Some of the data downloaded from the Hydromet or USGS sites had missing data points, either single data points or weeks to months of missing data. This data was still valuable and adequate to use for the planning level analysis in the Resource Assessment; therefore, data gaps were filled in using best professional

judgment. For example, for single gaps, the previous data point could be repeated and for consecutive gaps, linear interpolation could be applied. Medium confidence was also assigned to data provided as monthly averages for flow and net head from irrigation records. The monthly averages were used as daily data points in order to run the Hydropower Assessment Tool.

• Low Confidence: assigned to sites where no historical hydrologic records were available. Local area office staff were contacted and provided estimates on flow and head available for hydropower generation based on local knowledge of the site. If staff had local knowledge of the site, it was included as information available on the site, but assigned a low confidence rating. Low confidence was also assigned to sites that had data available, but the local staff suspected inaccuracies in the data based on local knowledge. Sites with unique data issues, such as only monthly flows or design flow capacity available, but still used for analysis, were also given a low confidence rating.

	High Confidence	Medium Confidence	Low Confidence
Great Plains	56	15	66
Lower Colorado	0	2	26
Mid-Pacific	5	10	25
Pacific Northwest	28	7	48
Upper Colorado	28	35	110
Total	117	69	275

Table 2-2 Number of High, Medium, and Low Confidence Sites perRegion

Results from low confidence data, though useful to analyze a site's potential at this preliminary level of investigation, should not be used for more detailed or feasibility level analyses. Efforts to collect more reliable data (i.e. higher confidence) should be made in subsequent analyses.

2.6 Site Data Summary

Site location, proximity, and hydrologic data are unique to each of the 530 sites. Reclamation was able to collect data needed for the Hydropower Assessment Tool for the majority of sites. Table 2-3 summarizes hydropower potential and data confidence levels for the 530 sites. The hydropower potential column indicates if any hydropower potential exists at the site based on data from Reclamation staff or model estimates; however, a "yes" does not mean that the site is economically viable. Further, hydropower potential from model estimates is based on the 30 percent flow exceedance level. If the model determined flows were too low or infrequent for hydropower generation based on the 30 percent exceedance level, then the 20 percent flow exceedance level is noted to give an indication of flow magnitude and duration at the site.

Dash marks indicate sites that were removed from the analysis or a canal or tunnel site that requires further analysis. Sites were removed from the analysis because of various reasons, including if the site was duplicate to another, if hydropower was already developed or being developed, or if Reclamation no longer owned the site. These sites were identified and not further analyzed in the Resource Assessment. The notes column indicates the reasons why sites were removed, reasons for no hydropower potential, or additional notes on data availability or site characteristics.

Site ID	Site Name	Hydropower Potential (yes/no) ¹	Data Confidence Level	Notes (including reason for no hydropower potential)
GP-1	A-Drop Project, Greenfield Main Canal Drop	No ²	High	Site has seasonal flows about 4 months per year, model estimated that flows are too low and infrequent for economical hydropower development at 30 percent flow exceedance, 20 percent flow exceedance would be 1,090 cfs
GP-2	Almena Diversion Dam	No	Low	Data indicates there is no drop into the canal; therefore, no head is available for hydropower development
GP-3	Altus Dam	No	Medium	Site has seasonal flows about 2 months per year, model estimated that flows are too low and infrequent for hydropower development at 30 percent flow exceedance, 20 percent flow exceedance would be 2 cfs
GP-4	Anchor Dam	Yes	High	
GP-5	Angostura Dam	Yes	Low	Flow data includes some flood releases
GP-6	Anita Dam	No	Low	Facility only operates seasonally and has limited flows for hydropower development
GP-7	Arbuckle Dam	No	Low	Data indicates flows are too low for hydropower development, about 1 cfs constant downstream release
GP-8	Barretts Diversion Dam	Yes	Medium	
GP-9	Bartley Diversion Dam	No	Low	Data indicates there is no drop into the canal; therefore, no head is available for hydropower development
GP-10	Belle Fourche Dam	Yes	High	Site has seasonal flows
GP-11	Belle Fourche Diversion Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-12	Bonny Dam	Yes	High	
GP-13	Box Butte Dam	No	Low	Site has some seasonal flows about 1-2 months per year, model estimated that flows are too low and infrequent for hydropower development at 30 percent flow exceedance, 20 percent flow exceedance would be 2 cfs Site has less than 10 feet of head, has infrequent higher flows during 1-2 months
GP-14	Bretch Diversion Canal	Yes	Low	per year
GP-15	Bull Lake Dam	Yes	High	Site has seasonal flows
GP-16	Cambridge Diversion Dam	No	Low	Data indicates there is no drop into the canal; therefore, no head is available for hydropower development
GP-17	Carter Creek Diversion Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-18	Carter Lake Dam No. 1	Yes	High	Site has seasonal flows
GP-19	Cedar Bluff Dam	No	High	Site has some seasonal flows about 1-2 months per year, model estimated that flows are too low and infrequent for hydropower development at 30 percent flow exceedance, 20 percent flow exceedance would also be 0 cfs
GP-20	Chapman Diversion Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-21	Cheney Dam	No ²	Low	Flow data includes some flood releases. Site has infrequent high flows in some

Site ID	Site Name	Hydropower Potential (yes/no) ¹	Data Confidence Level	Notes (including reason for no hydropower potential)
				months, model estimated that flows are too low and infrequent for economical hydropower development at 30 percent flow exceedance, 20 percent flow exceedance would be 200 cfs
GP-22	Choke Canyon Dam	Yes	Low	Flow data includes some flow releases, steady state flows around 30 cfs
GP-23	Clark Canyon Dam	Yes	High	
GP-24	Corbett Diversion Dam	Yes	High	Site has seasonal flows
GP-25	Culbertson Diversion Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-26	Davis Creek Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-27	Deaver Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-28	Deerfield Dam	Yes	High	
GP-29	Dickinson Dam	Yes	High	Site has low seasonal flows
GP-30	Dixon Canyon Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-31	Dodson Diversion Dam	Yes	Low	
GP-32	Dry Spotted Tail Diversion Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-33	Dunlap Diversion Dam	No	Low	Data indicates there is no drop into the canal; therefore, no head is available for hydropower development
GP-34	East Portal Diversion Dam	Yes	High	
GP-35	Enders Dam	Yes	High	Site has some seasonal flow in July and August, low to no flow the rest of the year
GP-36	Fort Cobb Dam	No	Low	Site has some infrequent flows 1 month per year, model estimated that flows are too low and infrequent for hydropower development at 30 percent flow exceedance, 20 percent flow exceedance would be 21 cfs
GP-37	Fort Shaw Diversion Dam	Yes	Medium	
GP-38	Foss Dam	Yes	Low	
GP-39	Fresno Dam	Yes	High	Site has year round flows with high seasonal flows May through September
GP-40	Fryingpan Diversion Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-41	Gibson Dam	Yes	High	
GP-42	Glen Elder Dam	Yes	High	
GP-43	Granby Dam	Yes	High	
GP-44	Granby Dikes 1-4	No	Low	Dike structure, no flows available for hydropower generation
GP-45	Granite Creek Diversion Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-46	Gray Reef Dam	Yes	High	

Site ID	Site Name	Hydropower Potential (yes/no) ¹	Data Confidence Level	Notes (including reason for no hydropower potential)
	Greenfield Project, Greenfield Main		_	
GP-47	Canal Drop	Yes	Low	
GP-48	Halfmoon Creek Diversion Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-49	Hanover Diversion Dam	-	-	Reclamation does not own the site
GP-50	Heart Butte Dam	Yes	High	
GP-51	Helena Valley Dam	Yes	High	
GP-52	Helena Valley Pumping Plant	Yes	High	
GP-53	Horse Creek Diversion Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-54	Horsetooth Dam	Yes	High	Site has seasonal flows
GP-55	Hunter Creek Diversion Dam	No	Medium	Site has some seasonal flows about 1-2 months per year, model estimated that flows are too low and infrequent for hydropower development at 30 percent flow exceedance, 20 percent flow exceedance would also be 0 cfs
GP-56	Huntley Diversion Dam	Yes	Medium	
GP-57	Ivanhoe Diversion Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-58	James Diversion Dam	Yes	High	Consistent months of high flows in most years, head is 5 feet
GP-59	Jamestown Dam	Yes	High	
GP-60	Johnson Project, Greenfield Main Canal Drop	Yes	Medium	Site has seasonal flows
GP-61	Kent Diversion Dam	No	Low	Data indicates there is no drop into the canal; therefore, no head is available for hydropower development
GP-62	Keyhole Dam	No	High	Site has some seasonal flows about 2-3 months per year, model estimated that flows are too low and infrequent for hydropower development at 30 percent flow exceedance, 20 percent flow exceedance would also be 0 cfs
GP-63	Kirwin Dam	Yes	High	
GP-64	Knights Project, Greenfield Main Canal Drop	No ²	Medium	Site has seasonal flows about 4 months per year, model estimated that flows are too low and infrequent for hydropower development at 30 percent flow exceedance, 20 percent flow exceedance would be 35 cfs
GP-65	Lake Alice Lower 1-1/2 Dam	No	Low	Site has no head for hydropower development
GP-66	Lake Alice No. 1 Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-67	Lake Alice No. 2 Dam	Yes	Medium	Design head is 3 feet.
GP-68	Lake Sherburne Dam	Yes	Medium	Site has seasonal flows
GP-69	Lily Pad Diversion Dam	no	Low	Model estimated that flows are too low for hydropower development, flows less

Site ID	Site Name	Hydropower Potential (yes/no) ¹	Data Confidence Level	Notes (including reason for no hydropower potential)
				than 10 cfs 95% of the time
GP-70	Little Hell Creek Diversion Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-71	Lovewell Dam	No ²	High	Site has seasonal flows about 5-6 months per year, model estimated that flows are too low and infrequent for economical hydropower development at 30 percent flow exceedance, 20 percent flow exceedance would be 100 cfs
GP-72	Lower Turnbull Drop Structure	-	-	Site already has hydropower developed or being developed
GP-73	Lower Yellowstone Diversion Dam	-	-	Reclamation and Corps are working on improved fish passage at the dam, no potential for hydropower development
GP-74	Mary Taylor Drop Structure	No ²	Medium	Site has seasonal flows about 5 months per year, model estimated that flows are too low and infrequent for economical hydropower development at 30 percent flow exceedance, 20 percent flow exceedance would be 123 cfs
GP-75	Medicine Creek Dam	Yes	High	
GP-76	Merritt Dam	Yes	Low	
GP-77	Merritt Dam	-	-	Duplicate site, same as Merritt Dam
GP-78	Middle Cunningham Creek Diversion Dam	No	Low	Model estimated that flows and head are too low for hydropower development, flows less than 21 cfs 95% of the time and head is 7.5 feet
GP-79	Midway Creek Diversion Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-80	Mill Coulee Canal Drop, Upper and Lower Drops Combined	No	Medium	Site has seasonal flow for 4 months in some years, model estimated that flows are too low and infrequent for hydropower development at 30 percent flow exceedance, 20 percent flow exceedance would be 0 cfs
GP-81	Minatare Dam	No ²	High	Site has seasonal flow for 3 months per year, model estimated that flows are too low and infrequent for economical hydropower development at 30 percent flow exceedance, 20 percent flow exceedance would be 160 cfs
GP-82	Mormon Creek Diversion Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-83	Mountain Park Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
	Nelson Dikes C	No	Lliab	Site has some seasonal flows about 1-2 months per year, model estimated that flows are too low and infrequent for hydropower development at 30 percent flow
GP-84	Nelson Dikes C	No	High	exceedance, 20 percent flow exceedance would also be 0 cfs
GP-85	Nelson Dikes DA	Yes	High	Dete indicates flavor are too law or infragment for budyer over down in the set
GP-86	No Name Creek Diversion Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-87	Norman Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-88	North Cunningham Creek Diversion Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-89	North Fork Diversion Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development

Site ID	Site Name	Hydropower Potential (yes/no) ¹	Data Confidence Level	Notes (including reason for no hydropower potential)
GP-90	North Poudre Diversion Dam	-	-	Reclamation does not own the site
GP-91	Norton Dam	Yes	High	
GP-92	Olympus Dam	Yes	High	
GP-93	Pactola Dam	Yes	High	
GP-94	Paradise Diversion Dam	No ²	High	Site has seasonal flow for 3 months per year, model estimated that flows are too low and infrequent for economical hydropower development at 30 percent flow exceedance, 20 percent flow exceedance would be 90 cfs
GP-95	Pathfinder Dam	Yes	High	
GP-96	Pathfinder Dike	No	Low	Dike structure, no flows available for hydropower generation
GP-97	Pilot Butte Dam	-	-	Reclamation has an existing 1,600 kW plant at Pilot Butte Dam that is currently not in operation
GP-98	Pishkun Dike - No. 4	Yes	High	Site has seasonal flows
GP-99	Pueblo Dam	Yes	High	
GP-100	Ralston Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-101	Rattlesnake Dam	No	High	Model estimated that flows are too low for hydropower development , site has 1 cfs flow consistently
GP-102	Red Willow Dam	Yes	High	
GP-103	Saint Mary Diversion Dam	Yes	High	
GP-104	Sanford Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-105	Satanka Dike	No	Low	Dike structure, no flows available for hydropower generation
GP-106	Sawyer Creek Diversion Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-107	Shadehill Dam	Yes	High	
GP-108	Shadow Mountain Dam	Yes	High	
GP-109	Soldier Canyon Dam	No	High	Model estimated that flows and head are too low for hydropower development, flows less than 2 cfs 95% of the time
GP-110	South Cunningham Creek Diversion Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-111	South Fork Diversion Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-112	South Platte Supply Canal Diverion Dam	-	-	Reclamation does not own the site
GP-113	Spring Canyon Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-114	St. Mary Canal - Drop 1	Yes	High	Site has seasonal flows
GP-115	St. Mary Canal - Drop 2	Yes	High	Site has seasonal flows

Site ID	Site Name	Hydropower Potential (yes/no) ¹	Data Confidence Level	Notes (including reason for no hydropower potential)
GP-116	St. Mary Canal - Drop 3	Yes	High	Site has seasonal flows
GP-117	St. Mary Canal - Drop 4	Yes	High	Site has seasonal flows
GP-118	St. Mary Canal - Drop 5	Yes	High	Site has seasonal flows
GP-119	St. Vrain Canal	-	-	Reclamation does not own the site
GP-120	Sun River Diversion Dam	Yes	High	Site has seasonal flows
GP-121	Superior-Courtland Diversion Dam	No	Low	Data indicates there is no drop into the canal; therefore, no head is available for hydropower development
GP-122	Trenton Dam	Yes	High	
GP-123	Trenton Dam	-	-	Duplicate site, same as Trenton Dam
GP-124	Tub Springs Creek Diversion Dam	No	Low	Site has no flow available for hydropower during irrigation season; structures are open during remainder of year with no available head for hydropower development
GP-125	Twin Buttes Dam	Yes	Low	
GP-126	Twin Lakes Dam (USBR)	Yes	High	
GP-127	Upper Turnbull Drop Structure	-	-	Site already has hydropower developed or being developed
GP-128	Vandalia Diversion Dam	Yes	Medium	
GP-129	Virginia Smith Dam	Yes	Low	
GP-130	Webster Dam	Yes	High	
GP-131	Whalen Diversion Dam	Yes	High	Site has only one year of data available. Based on one year data, hydropower may be a potential at the site
GP-132	Willow Creek Dam	Yes	High	
GP-133	Willow Creek Dam (MT)	No	Medium	Site has some seasonal flows about 1-2 months per year, model estimated that flows are too low and infrequent for hydropower development at 30 percent flow exceedance, 20 percent flow exceedance would also be 0 cfs
GP-134	Willow Creek Forebay Diversion Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
GP-135	Willwood Canal	Yes	Medium	Site has seasonal flows
GP-136	Willwood Diversion Dam	Yes	High	
GP-137	Wind River Diversion Dam	Yes	High	Site has seasonal flows
GP-138	Woods Project, Greenfield Main Canal Drop	Yes	Low	
GP-139	Woodston Diversion Dam	No	Low	Data indicates there is no drop into the canal; therefore, no head is available for hydropower development

Site ID	Site Name	Hydropower Potential (yes/no) ¹	Data Confidence Level	Notes (including reason for no hydropower potential)
GP-140	Wyoming Canal - Sta 1016	Yes	Low	
GP-141	Wyoming Canal - Sta 1490	Yes	Low	
GP-142	Wyoming Canal - Sta 1520	Yes	Low	
GP-143	Wyoming Canal - Sta 1626	Yes	Low	
GP-144	Wyoming Canal - Sta 1972	Yes	Low	
GP-145	Wyoming Canal - Sta 997	Yes	Low	
GP-146	Yellowtail Afterbay Dam	Yes	Medium	Crow Tribe has exclusive right to develop power at this Site as part of the "Claims Resolution Act of 2010" (P.L. 111-291) that was signed into law by President Obama on December 8, 2010 Site is a siphon entrance, data indicates flows are too low for hydropower
LC-1	Agua Fria River Siphon	No	Low	development (approximately 25 cfs)
LC-2 LC-3	Agua Fria Tunnel All American Canal		Low	Data available indicates that the maximum flow based on design capacity at this site is 3,000 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this tunnel site to determine hydropower potential Data indicates no head is available for hydropower development (approximately 1.97 feet of head); many power plants already exist on the canal
LC-4	All American Canal Headworks	-	-	Duplicate site
LC-5	Arizona Canal	_	Low	Data available indicates that the maximum flow based on design capacity at this site is 2,000 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this canal site to determine hydropower potential
LC-6	Bartlett Dam	Yes	Medium	
LC-7	Buckskin Mountain Tunnel	-	Low	Data available indicates that the maximum flow based on design capacity at this site is 3,000 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this tunnel site to determine hydropower potential
LC-8	Burnt Mountain Tunnel		Low	Further analysis needs to be conducted at this site to determine hydropower potential
LC-9	Centennial Wash Siphon	No	Low	Data indicates no head is available for hydropower development
LC-10	Coachella Canal	No	Low	Data indicates no head is available for hydropower development (16.8 feet of head over 123 miles). Field representatives indicated that flows at site are unreliable and insufficient for hydropower development. Data available indicates that the maximum flow based on design capacity at this
LC-11	Consolidated Canal	-	Low	site is 550 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this canal site to determine hydropower

Site ID	Site Name	Hydropower Potential (yes/no) ¹	Data Confidence Level	Notes (including reason for no hydropower potential)
				potential
LC-12	Cross Cut Canal	_	Low	Data available indicates that the maximum flow based on design capacity at this site is 400 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this canal site to determine hydropower potential
LC-13	Cunningham Wash Siphon	No	Low	Data indicates no head is available for hydropower development
LC-14	Eastern Canal	_	Low	Data available indicates that the maximum flow based on design capacity at this site is 360 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this canal site to determine hydropower potential
LC-15	Gila Gravity Main Canal Headworks	Yes	Medium	
LC-16	Gila River Siphon	No	Low	Data indicates no head is available for hydropower development (3.3 feet of head)
LC-17	Grand Canal	_	Low	Data available indicates that the maximum flow based on design capacity at this site is 625 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this canal site to determine hydropower potential
LC-18	Granite Reef Diversion Dam	No	Low	Data indicates no head is available for hydropower development (1.5 feet of head)
LC-19	Hassayampa River Siphon	No	Low	Data indicates no head is available for hydropower development
LC-20	Horseshoe Dam	Yes	Low	Site has seasonal flows
LC-21	Imperial Dam	Yes	Low	Site has seasonal flows
LC-22	Interstate Highway Siphon	No	Low	Data indicates no head is available for hydropower development
LC-23	Jackrabbit Wash Siphon	No	Low	Data indicates no head is available for hydropower development
LC-24	Laguna Dam	Yes	Low	Facility is silted in currently and dredging will be required to have the dam fully functional. Data indicates about 200 cfs flow (assumed seasonal flow during the irrigation season)
LC-25	New River Siphon	No	Low	Data indicates no head is available for hydropower development
LC-26	Palo Verde Diversion Dam	-	-	Reclamation does not own the site
LC-27	Reach 11 Dike	No	Low	Dike structure, no flows available for hydropower generation
LC-28	Salt River Siphon Blowoff	No	Low	Data indicates no head is available for hydropower development
LC-29	Tempe Canal	No	Low	Data indicates no head is available for hydropower development
LC-30	Western Canal	No	Low	Data indicates no head is available for hydropower development
MP-1	Anderson-Rose Dam	Yes	Medium	

Site ID	Site Name	Hydropower Potential (yes/no) ¹	Data Confidence Level	Notes (including reason for no hydropower potential)
MP-2	Boca Dam	Yes	High	
MP-3	Bradbury Dam	Yes	Medium	
MP-4	Buckhorn Dam (Reclamation)	No	Low	Data indicates flows are too low or infrequent for hydropower development
MP-5	Camp Creek Dam	No	Low	Data indicates there is no effective flow through the facility; it is diversion dam collecting runoff
MP-6	Carpenteria	No	Low	Data indicates there is no effective flow through the facility; it is a regulating dam
MP-7	Carson River Dam	No	Low	Data indicates approximately 14 feet of head; field representatives indicated that flows at site are unreliable and insufficient for hydropower development.
MP-8	Casitas Dam	Yes	High	
MP-9	Clear Lake Dam	No	Medium	Model estimated that no heads is available for hydropower development
MP-10	Contra Loma Dam	No	Low	Site is used solely for recreation and emergency municipal water supply should there be a failure in the system. It is not suitable for hydroelectric generation
MP-11	Derby Dam	No	Low	Data indicates no head is available for hydropower development ; all the head is being used to move the water from Truckee River to Lahontan dam
MP-12	Dressler Dam	-	-	Site was de-authorized and was not built
MP-13	East Park Dam	No	Low	Site is a very old facility built in 1908 and has unconventional outlet works
MP-14	Funks Dam	No	Low	Dam is a widening in the canal, there is no flow to capture for hydropower development
MP-15	Gerber Dam	Yes	Medium	Site has seasonal flows
MP-16	Glen Anne Dam	No	Low	Site is a regulating reservoir with a Safety of Dams restriction on use of the dam. Little inflows other than local drainage which gets released into a creek
MP-17	John Franchi Dam	Yes	Low	Site has seasonal flows
MP-18	Lake Tahoe Dam	Yes	High	
MP-19	Lauro Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
MP-20	Little Panoche Detention Dam	No	Low	Site is a detention dam and only discharges stream flows of only a few cfs during the winter/spring with occasional increases based on rainfall in watershed
MP-21	Los Banos Creek Detention Dam	No	Low	Site is a detention dam operated under Corps flood operating criteria. Infrequent discharges of 100 to 400 cfs are made through outlet works
MP-22	Lost River Diversion Dam	No	Low	Site has no effective head and water is rarely put down the river. Water flows through the canal to the Klamath Project and refuges. There is no generation potential at the site
MP-23	Malone Diversion Dam	Yes	Medium	
MP-24	Marble Bluff Dam	Yes	High	
MP-25	Martinez Dam	No	Low	Site is a terminal reservoir for the Contra Costa Canal and supplies water to the

Site ID	Site Name	Hydropower Potential (yes/no) ¹	Data Confidence Level	Notes (including reason for no hydropower potential)
				City of Martinez and Shell Oil under pressure; would not want to lose any head for hydropower development
MP-26	Miller Dam	No	Low	Data indicates approximately 5 feet of head available at site; field representative indicated that there is no flow at this site for 6 months in most years. Not enough flow and head at site for hydropower development.
MP-27	Mormon Island Auxiliary Dike	No	Low	Data indicates flows are too low or infrequent for hydropower development
MP-28	Northside	No	Low	Data indicates no head is available for hydropower development
MP-29	Ortega Dam	No	Low	Data indicates flows are too low for hydropower development, site is a small regulating reservoir
MP-30	Prosser Creek Dam	Yes	High	
MP-31	Putah Creek Dam	Yes	Medium	
MP-32	Putah Diversion Dam	Yes	Medium	
MP-33	Rainbow Dam	Yes	Medium	
MP-34	Red Bluff Dam	No	Low	
MP-35	Robles Dam	No	Low	Data indicates no flow or head is available for hydropower development, site is a diversion structure
MP-36	Rye Patch Dam	-	-	Title transfers are in progress, no longer a Reclamation site
MP-37	San Justo Dam	No	Low	Site is a terminal/balancing reservoir; reservoir head is needed to deliver water in the system
MP-38	Sheckler Dam	No	Low	Flows to this site are limited and low for hydropower development. The site is also remote (7.1 miles of transmission line distance), which would increase development costs
MP-39	Sly Park Dam	-	-	Reclamation does not own the site
MP-40	Spring Creek Debris Dam	No	Low	Site holds back contaminated water from past mining; not a source for hydropower development
MP-41	Sugar Pine	-	-	Reclamation does not own the site
MP-42	Terminal Dam	No	Low	Data indicates flows are too low for hydropower development, site is a siphon diversion
MP-43	Twitchell Dam	No ²	Medium	Site has inconsistent flows 2-3 months in some years, model estimated that flows are too low and infrequent for hydropower development at 30 percent flow exceedance, 20 percent flow exceedance would be 150 cfs, site has only 3 years data
MP-44	Upper Slaven Dam	Yes	Medium	
PN-1	Agate Dam	Yes	High	
PN-2	Agency Valley	Yes	High	

Site ID	Site Name	Hydropower Potential (yes/no) ¹	Data Confidence Level	Notes (including reason for no hydropower potential)
	Antologie Oreste	NL-	1	Data indicates no head is available for hydropower development, irrigation
PN-3	Antelope Creek	No	Low	turnout Data indicates no head is available for hydropower development, site is a check
PN-4	Arnold Dam	No	Low	structure
PN-5	Arrowrock Dam	-	-	Site exempted - FERC docket number 4656
PN-6	Arthur R. Bowman Dam	Yes	High	
PN-7	Ashland Lateral	No	Low	Data indicates no flow or head is available for hydropower development
PN-8	Beaver Dam Creek	No	Low	Data indicates no head is available for hydropower development
PN-9	Bully Creek	Yes	High	
PN-10	Bumping Lake	Yes	High	
PN-11	Cascade Creek	No	Low	Data indicates flows are too low for hydropower development, site is very remote and difficult to access
PN-12	Cle Elum Dam	Yes	High	
PN-13	Clear Creek	No	Low	Data indicates flows are too low or infrequent for hydropower development; site is also called Clear Lake
PN-14	Col W.W. No 4	No	Low	Site is a waste way with no recorded flow data; hydropower potential is not likely
PN-15	Cold Springs Dam	Yes	High	
PN-16	Conconully	No	Low	Data indicates flows are too low or infrequent for hydropower development
PN-17	Conde Creek	No	Low	Data indicates flows are too low for hydropower development, site is a collection dam for Howard Prairie Dam
PN-18	Cowiche	-	-	Site exempted - FERC docket number 7337
PN-19	Crab Creek Lateral #4	-	Low	Further analysis needs to be conducted at this lateral to determine hydropower potential
PN-20	Crane Prairie	Yes	High	
PN-21	Cross Cut	-	-	Site exempted - FERC docket number 3991
PN-22	Daley Creek	No	Low	Data indicates no head is available for hydropower development, site is very remote and difficult to access
PN-23	Dead Indian	No	Low	Data indicates flows are too low for hydropower development, no diversion at the site
PN-24	Deadwood Dam	Yes	High	
PN-25	Deer Flat East Dike	No	Low	Dike structure, no flows available for hydropower generation
PN-26	Deer Flat Middle	No	Low	Dike structure, no flows available for hydropower generation
PN-27	Deer Flat North Lower	No	Low	Dike structure, no flows available for hydropower generation

Site ID	Site Name	Hydropower Potential (yes/no) ¹	Data Confidence Level	Notes (including reason for no hydropower potential)
PN-28	Deer Flat Upper	No	Low	Dike structure, no flows available for hydropower generation
PN-29	Diversion Canal Headworks	_	Low	Data available indicates that the maximum flow based on design capacity at this site is 160 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this canal site to determine hydropower potential
PN-30	Dry Falls - Main Canal Headworks	-	-	Site exempted - FERC docket number 2849
PN-31	Easton Diversion Dam	Yes	High	
PN-32	Eltopia Branch Canal	-	-	Site exempted - FERC docket number 3842
PN-33	Eltopia Branch Canal 4.6	-	-	Site exempted - FERC docket number 3842
PN-34	Emigrant Dam	Yes	High	
PN-35	Esquatzel Canal	-	Low	Further analysis needs to be conducted at this canal to determine hydropower potential
PN-36	Feed Canal	-	Low	Data available indicates that the maximum flow based on design capacity at this site is 350 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this canal site to determine hydropower potential
PN-37	Fish Lake	Yes	High	
PN-38	Fourmile Lake	-	-	Reclamation does not own the site
PN-39	French Canyon	No	Low	Site has very limited storage area and no available hydrologic data
PN-40	Frenchtown	No	Low	Data indicates 13 feet of head available at site; field representatives indicated that flows at site are unreliable and insufficient for hydropower development.
PN-41	Golden Gate Canal	Yes	Low	Development right issued to Boise Project Board of Control, FERC docket number 5056, site has seasonal flows
PN-42	Grassy Lake	No	High	Site has seasonal flow for 3 months in some years, model estimated that flows are too low and infrequent for hydropower development at 30 percent flow exceedance, 20 percent flow exceedance would also be 0 cfs
PN-43	Harper Dam	Yes	Low	Site has seasonal flows
PN-44	Haystack Canal	Yes	High	Site has seasonal flows
PN-45	Howard Prairie Dam	No	High	Model estimated that flows and head are too low for hydropower development, flows less than 5 cfs 95% of the time
PN-46	Hubbard Dam	No	Low	Data indicates no flow or head is available for hydropower development, site is a very shallow and small regulating pond. Available net head is approximately 5 feet and has no flow for most of the year
PN-47	Hyatt Dam	No	Low	Data indicates flows are too low for hydropower development, site is a reregulating reservoir with very low flows

Site ID	Site Name	Hydropower Potential (yes/no) ¹	Data Confidence Level	Notes (including reason for no hydropower potential)
PN-48	Kachess Dam	Yes	Medium	
PN-49	Keechelus Dam	Yes	High	
PN-50	Keene Creek	-	-	Site already has hydropower developed or being developed
PN-51	Little Beaver Creek	No	Low	Data indicates no head is available for hydropower development. Remote site with limited accessibility; diverts water into Howard Prairie
PN-52	Little Wood River Dam	Yes	High	
PN-53	Lytle Creek	Yes	Low	
PN-54	Main Canal No. 10	-	Low	Further analysis needs to be conducted at this canal to determine hydropower potential
PN-55	Main Canal No. 6	-	Low	Further analysis needs to be conducted at this canal to determine hydropower potential
PN-56	Mann Creek	Yes	High	
PN-57	Mason Dam	Yes	High	Site has seasonal flows
PN-58	Maxwell Dam	Yes	Medium	
PN-59	McKay Dam	Yes	High	
PN-60	Mile 28 - on Milner Gooding Canal	-	-	Site already has hydropower developed or being developed
PN-61	Mora Canal Drop	-	-	Site exempted - FERC docket number 3403
PN-62	North Canal Diversion Dam	-	-	Reclamation does not own the site; preliminary permit has been issued for the North Unit
PN-63	North Unit Main Canal	-	Low	Data available indicates that the maximum flow based on design capacity at this site is 1,000 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this canal site to determine hydropower potential
PN-64	Oak Street	No	Low	Data indicates no head is available for hydropower development, site is a diversion structure with approximately 1 foot of available head
PN-65	Ochoco Dam	Yes	High	
PN-66	Orchard Avenue	-	-	Site already has hydropower developed or being developed
PN-67	Owyhee Tunnel No. 1	-	-	Site exempted - FERC docket number 4359
PN-68	PEC Mile 26.3	-	Low	Further analysis needs to be conducted at this canal to determine hydropower potential
PN-69	Phoenix Canal	No	Low	Data indicates no head is available for hydropower development , very small drop over weir
PN-70	Pilot Butte Canal	-	Low	Further analysis needs to be conducted at this canal to determine hydropower potential

Site ID	Site Name	Hydropower Potential (yes/no) ¹	Data Confidence Level	Notes (including reason for no hydropower potential)
PN-71	Pinto Dam	No	Low	Data indicates no flow available for hydropower development.
PN-72	Potholes Canal Headworks	-	-	Site exempted - FERC docket number P-2840
PN-73	Potholes East Canal - PEC 66.0	-	-	Site exempted - FERC docket number P-3843
PN-74	Potholes East Canal 66.0	-	-	Site exempted - FERC docket number 3843
PN-75	Prosser Dam	-	-	Site already has hydropower developed or being developed
PN-76	Quincy Chute Hydroelectric	-	-	Site exempted - FERC docket number 2937
PN-77	RB4C W. W. Hwy26 Culvert	No	Low	Site is a road culvert, a penstock would be necessary for hydropower generation
PN-78	Reservoir "A"	Yes	High	
PN-79	Ringold W. W.	No	Low	Site is a waste way with no recorded flow data; hydropower development is not likely
PN-80	Ririe Dam	Yes	High	
PN-81	Rock Creek	No	Low	Data indicates no head is available for hydropower development. Very small structure with approximately 2 feet of available head
PN-82	Roza Diversion Dam	No	Low	Site receives excess flows from Yakima project with a drop of 20-25 feet. Available flows used for existing Reclamation power plant and fish mitigation
PN-83	Russel D Smith Dam	-	-	Site already has hydropower developed or being developed
PN-84	Saddle Mountain W. W.	No	Low	Site includes 9 drop structures with less than 2 feet of head available at each drop. Estimating piping distance to be 5 miles for 5 feet of head, project considered uneconomical based on estimated data
PN-85	Salmon Creek	-	-	Duplicate site, same as Salmon Lake
PN-86	Salmon Lake	No	Low	Data indicates there are no flows for hydropower development
PN-87	Scoggins Dam	Yes	High	
PN-88	Scootney Wasteway	Yes	Low	Site has seasonal flows
PN-89	Soda Creek	No	Medium	Model estimated that flows and head are too low for hydropower development, flows less than 9 cfs 95% of the time, head is 1 foot
PN-90	Soda Lake Dike	No	Low	Data indicates no head is available for hydropower development, site is a reregulating dike
PN-91	Soldier's Meadow Dam	No	Medium	Model estimated that flows are too low for hydropower development, flows less than 12 cfs 95% of the time
PN-92	South Fork Little Butte Creek	No	Low	Data indicates flows are too low for hydropower development, estimate of 10 cfs for 4 months of the year with 5 feet of head
PN-93	Spectacle Lake Dike	No	Low	All available flows through the site are used for irrigation
PN-94	Summer Falls on Main Canal	-	-	Site already has hydropower developed or being developed
PN-95	Sunnyside Dam	Yes	Medium	

Site ID	Site Name	Hydropower Potential (yes/no) ¹	Data Confidence Level	Notes (including reason for no hydropower potential)
PN-96	Sweetwater Canal	No	Low	Data indicates no head is available for hydropower development, irrigation structure with head less than 2 feet available
PN-97	Thief Valley Dam	Yes	Medium	
111-37		103	Mediam	Site has a prime anadromous fish spotting facility with no flow available for
PN-98	Three Mile Falls	No	Low	generation
PN-99	Tieton Diversion	-	-	Site already has hydropower developed or being developed
PN-100	Unity Dam	Yes	Medium	
PN-101	Warm Springs Dam	Yes	High	
PN-102	Wasco Dam	No	High	Model estimated that flows are too low for hydropower development, flows less than 20 cfs 95% of the time
PN-103	Webb Creek	No	Low	Data indicates no head is available for hydropower development, site is a small diversion structure with less than 2 feet of head available
PN-104	Wickiup Dam	Yes	High	
PN-105	Wild Horse - BIA	Yes	High	Site has seasonal flows
UC-1	Alpine Tunnel	No	Low	Data indicates no head is available for hydropower development, site is underground
UC-2	Alpine-Draper Tunnel	-	-	Reclamation does not own the site
UC-3	American Diversion Dam	-	-	Reclamation does not own the site, site is owned by a State department
UC-4	Angostura Diversion	Yes	High	
UC-5	Arthur V. Watkins Dam	Yes	High	
UC-6	Avalon Dam	Yes	High	
UC-7	Azeotea Creek and Willow Creek Conveyance Channel Station 1565+00	Yes	Low	Site has seasonal flows
UC-8	Azeotea Creek and Willow Creek Conveyance Channel Station 1702+75	Yes	Low	Site has seasonal flows
UC-9	Azeotea Creek and Willow Creek Conveyance Channel Station 1831+17	Yes	Low	Site has seasonal flows
UC-10	Azotea Creek and Willow Creek Conveyance Channel Outlet	No	Low	Model estimated that head is too low for hydropower development, less than 5 feet
UC-11	Azotea Tunnel	Yes	High	Site has seasonal flows
UC-12	Beck's Feeder Canal	-	Low	Data available indicates that the maximum flow based on design capacity at this site is 94 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this canal site to determine hydropower potential. The site is also remote (11.3 miles of transmission line distance), which would increase development costs

Site ID	Site Name	Hydropower Potential (yes/no) ¹	Data Confidence Level	Notes (including reason for no hydropower potential)
UC-13	Big Sandy Dam	Yes	Medium	
UC-14	Blanco Diversion Dam	Yes	Medium	Site has seasonal flows
UC-15	Blanco Tunnel	Yes	Medium	Site has seasonal flows
UC-16	Brantley Dam	Yes	Medium	
UC-17	Broadhead Diversion Dam	No	Low	Data indicates 5 feet of head available at site; not enough head for hydropower development
UC-18	Brough's Fork Feeder Canal	_	Low	Data available indicates that the maximum flow based on design capacity at this site is 32 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this canal site to determine hydropower potential
UC-19	Caballo Dam	Yes	Low	
UC-20	Cedar Creek Feeder Canal	-	Low	Data available indicates that the maximum flow based on design capacity at this site is 66 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this canal site to determine hydropower potential
UC-21	Cottonwood Creek/Huntington Canal	-	-	Duplicate site, same as Swasey Diversion
UC-22	Crawford Dam	Yes	High	
UC-23	Currant Creek Dam	Yes	High	
UC-24	Currant Tunnel	No	Low	Data indicates no head is available for hydropower development, site is underground
UC-25	Dam No. 13	-	-	Title transfers are in progress, no longer a Reclamation site
UC-26	Dam No. 2	-	-	Title transfers are in progress , no longer a Reclamation site
UC-27	Davis Aqueduct	No	Low	Not a feasible site
UC-28	Dolores Tunnel	Yes	Medium	
UC-29	Docs Diversion Dam	No	Low	Data indicates flows are too low or infrequent for hydropower development
UC-30	Duchesne Diversion Dam	-	-	Duplicate site, same as Duchesne Tunnel
UC-31	Duchesne Tunnel	No ²	Medium	Site has seasonal flow for 2 months per year, model estimated that flows are too low and infrequent for economical hydropower development at 30 percent flow exceedance, 20 percent flow exceedance would be 64 cfs
UC-32	Duschense Feeder Canal	-	-	Reclamation does not own the site, it is a BIA structure
UC-33	East Canal	_	Low	Data available indicates that the maximum flow based on design capacity at this site is 160 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this canal site to determine hydropower potential

Site ID	Site Name	Hydropower Potential (yes/no) ¹	Data Confidence Level	Notes (including reason for no hydropower potential)
UC-34	East Canal	No	Medium	Site has 2 feet head and low and infrequent flows for economical hydropower development
UC-35	East Canal Diversion Dam	No	Low	Data indicates 8 feet of head available at site; field representatives indicated that flows at site are unreliable and insufficient for hydropower development.
		-		
UC-36	East Canyon Dam	Yes	High	Data indicates 8 feet of head available at site with a diversion capacity of 30 cfs.
UC-37	East Fork Diversion Dam	No	Low	Flow and head not enough for hydropower development
UC-38	Eden Canal	No	Low	Data indicates no head is available for hydropower development, all the head available is being used to move water in the canal
UC-39	Eden Dam	No	High	Site has seasonal flows about 1-2 months per year, model estimated that flows are too low and infrequent for economical hydropower development at 30 percent flow exceedance, 20 percent flow exceedance would be 25 cfs
UC-40	Ephraim Tunnel	-	Low	Tunnel is designed to carry 95 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this tunnel site to determine hydropower potential .The site is also remote (11.9 miles of transmission line distance), which would increase development costs
UC-41	Farmington Creek Stream Inlet	-	Low	Further analysis needs to be conducted at this inlet to determine hydropower potential
UC-42	Fire Mountain Diversion Dam	No	Low	Data indicates no head is available for hydropower development
UC-43	Florida Farmers Diversion Dam	No	Low	Data indicates 14 feet of head available at site; field representatives indicated that flows at site are unreliable and insufficient for hydropower development.
UC-44	Fort Sumner Diversion Dam	Yes	High	
UC-45	Fort Thornburgh Diversion Dam	No	Low	Data indicates 9 feet of head available at site; field representatives indicated that flows at site are unreliable and insufficient for hydropower development.
UC-46	Fruitgrowers Dam	Yes	High	
UC-47	Garnet Diversion Dam	No	Medium	Site has 2 feet head and low and infrequent flows for economical hydropower development
UC-48	Gateway Tunnel	No	Low	Data indicates no head is available for hydropower development, site is a 3.2- mile long tunnel
UC-49	Grand Valley Diversion Dam	Yes	Medium	
UC-50	Great Cut Dike	No	Low	Dike structure, no flows available for hydropower generation
UC-51	Gunnison Diversion Dam	Yes	Medium	
UC-52	Gunnison Tunnel	Yes	Medium	
UC-53	Hades Creek Diversion Dam	No	Low	Data indicates no head is available for hydropower development
UC-54	Hades Tunnel	No	Low	Data indicates no head is available for hydropower development, site is underground

Site ID	Site Name	Hydropower Potential (yes/no) ¹	Data Confidence Level	Notes (including reason for no hydropower potential)
110 55				Further analysis needs to be conducted at this inlet to determine hydropower
UC-55	Haights Creek Stream Inlet	-	Low	potential
UC-56	Hammond Diversion Dam	Yes	Medium	
UC-57	Heron Dam	Yes	Medium	
UC-58	Highline Canal	No	Low	Data indicates canal capacity is approximately 8 cfs; not enough flow available at site for hydropower development
UC-59	Huntington North Dam	Yes	High	
UC-60	Huntington North Feeder Canal	-	Low	Data available indicates that the maximum flow based on design capacity at this site is 100 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this canal site to determine hydropower potential
UC-61	Huntington North Service Canal	-	-	Duplicate site, same Huntington North Dam
UC-62	Hyrum Dam	Yes	High	
UC-63	Hyrum Feeder Canal	No	Low	Data indicates canal capacity is approximately 9 cfs; not enough flow available at site for hydropower development
UC-64	Hyrum-Mendon Canal	_	Low	Data available indicates that the maximum flow based on design capacity at this site is 90 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this canal site to determine hydropower potential
UC-65	Indian Creek Crossing Div. Dam	-	-	Site no longer exists
UC-66	Indian Creek Dike	-	-	Site no longer exists
UC-67	Inlet Canal	Yes	Medium	
UC-68	Ironstone Canal	No	Low	Model estimated that no head is available for hydropower development
UC-69	Ironstone Diversion Dam	No	Low	Data indicates 13 feet of head available at site; field representatives indicated that flows at site are unreliable and insufficient for hydropower development.
UC-70	Isleta Diversion Dam	No	Low	Model estimated that no head is available for hydropower development, head ranges from 0 to 2 feet
UC-71	Jackson Gulch Dam	-	-	Site already has hydropower developed or being developed
UC-72	Joes Valley Dam	Yes	High	Site has seasonal flows
UC-73	Jordanelle Dam	-	-	Site already has hydropower developed or being developed
UC-74	Knight Diversion Dam	No	Low	Data indicates no head is available for hydropower development
UC-75	Layout Creek Diversion Dam	No	Low	Model estimated that flows are too low for hydropower development, flows less than 2 cfs 95% of the time
UC-76	Layout Creek Tunnel	-	Low	Data available indicates that the maximum flow based on design capacity at this site is 620 cfs. Further analysis needs to be conducted to collect seasonal flow

Site ID	Site Name	Hydropower Potential (yes/no) ¹	Data Confidence Level	Notes (including reason for no hydropower potential)
				distribution and net head data at this tunnel site to determine hydropower potential
UC-77	Layton Canal	No	Low	Data indicates no head is available for hydropower development, all the head available is being used to move water in the canal Data indicates 7 feet of head available at site; field representatives indicated that
UC-78	Leasburg Diversion Dam	No	Low	flows at site are unreliable and insufficient for hydropower development.
UC-79	Leon Creek Diversion Dam	No	Low	Data indicates 10 feet of head available at site; field representatives indicated that flows at site are unreliable and insufficient for hydropower development.
UC-80	Little Navajo River Siphon	No	Low	Site is a buried siphon structure that offers no effective access and no potential for hydropower development. Redesign and construction would be needed to maintain design flow, available head is approximately 7 feet
UC-81	Little Oso Diversion Dam	No	Medium	Site has 9 feet head and low and infrequent flows for economical hydropower development.
UC-82	Little Sandy Diversion Dam	No	Low	Data indicates 5 feet of head available at site; not enough head for hydropower development
UC-83	Little Sandy Feeder Canal	_	Low	Data available indicates that the maximum flow based on design capacity at this site is 150 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this canal site to determine hydropower potential. The site is also remote (15.7 miles of transmission line distance), which would increase development costs
UC-84	Lost Creek Dam	Yes	High	
UC-85	Lost Lake Dam	No	Low	Site has less than 15 feet head and low and infrequent flows for economical hydropower development
UC-86	Loutzenheizer Canal	No	Low	Data indicates no head is available for hydropower development
UC-87	Loutzenheizer Diversion Dam	No	Low	Model estimated no head is available for hydropower development
UC-88	Lucero Dike	No	Low	Dike structure, no flows available for hydropower generation
UC-89	M&D Canal-Shavano Falls	Yes	Low	Site has less than 3 years of data available
UC-90	Madera Diversion Dam	No	Low	Data indicates 13 feet of head available at site; field representatives indicated that flows at site are unreliable and insufficient for hydropower development.
UC-91	Main Canal	-	-	Duplicate site, same as Newton Dam
UC-92	Means Canal	-	-	Duplicate site, same as Big Sandy Dam
UC-93	Meeks Cabin Dam	Yes	High	Site has seasonal flows
UC-94	Mesilla Diversion Dam	No	Low	Data indicates 10 feet of head available at site; field representatives indicated that flows at site are unreliable and insufficient for hydropower development.
UC-95	Middle Fork Kays Creek Stream Inlet	-	Low	Further analysis needs to be conducted at this inlet to determine hydropower potential

Site ID	Site Name	Hydropower Potential (yes/no) ¹	Data Confidence Level	Notes (including reason for no hydropower potential)
UC-96	Midview Dam	-	-	Reclamation does not own the site, it is a BIA structure
UC-97	Mink Creek Canal	No	Low	Data indicates canal capacity is approximately 36 cfs; not enough flow available at site for hydropower development
UC-98	Montrose and Delta Canal	Yes	Low	
UC-99	Montrose and Delta Div. Dam	No	Low	Data indicates 10 feet of head available at site; field representatives indicated that flows at site are unreliable and insufficient for hydropower development.
UC-100	Moon Lake Dam	Yes	High	
UC-101	Murdock Diversion Dam	-	-	Title transfers are in progress, no longer Reclamation sites
UC-102	Nambe Falls Dam	Yes	Low	
UC-103	Navajo Dam Diversion Works	-	-	Title transfers are in progress; site will no longer be a Reclamation site after transfer is complete
UC-104	Newton Dam	No	High	Site has low seasonal flow for 5 months per year, model estimated that flows are too low and infrequent for hydropower development at 30 percent flow exceedance, 20 percent flow exceedance would be 6 cfs
UC-105	Ogden Brigham Canal	-	Low	Data available indicates that the maximum flow based on design capacity at this site is 120 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this canal site to determine hydropower potential
UC-106	Ogden Valley Canal	-	-	Duplicate site, same as Ogden Valley Diversion Dam
UC-107	Ogden Valley Diversion Dam	No	Low	Site has 6 feet head and low and infrequent flows for economical hydropower development
UC-108	Ogden-Brigham Canal	-	-	Duplicate site
UC-109	Olmstead Diversion Dam	-	-	Site already has hydropower developed or being developed
UC-110	Olmsted Tunnel	-	-	Title transfers are in progress, no longer a Reclamation site
UC-111	Open Channel #1	-	-	Duplicate site, same flow as Vat Tunnel (Baffled channels)
UC-112	Open Channel #2	-	-	Duplicate site, same flow as Water Hollow Tunnel
UC-113	Oso Diversion Dam	No	Medium	Model estimated that no head is available for hydropower development
UC-114	Oso Feeder Conduit	-	Low	Closed conduit with a diversion capacity of 150 cfs. Diverts water from Little Navajo River to Oso Tunnel. No available head data. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this canal site to determine hydropower
UC-115	Oso Tunnel		Low	Data available indicates that 72 feet of head available at site. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this canal site to determine hydropower potential
UC-116	Outlet Canal	Yes	Medium	Site has seasonal flows

Table 2-3 Site I	Data and Hydropowe	r Potential Summary
------------------	--------------------	---------------------

Site ID	Site Name	Hydropower Potential (yes/no) ¹	Data Confidence Level	Notes (including reason for no hydropower potential)
UC-117	Paonia Dam	Yes	Medium	
UC-118	Park Creek Diversion Dam	No	Low	Data indicates 8 feet of head available at site; field representatives indicated that flows at site are unreliable and insufficient for hydropower development.
UC-119	Percha Arroyo Diversion Dam	No	Low	Data indicates flows are too low for hydropower development, diverts only seasonal storm water flow
UC-120	Percha Diversion Dam	No	Low	Data indicates 8 feet of head available at site; field representatives indicated that flows at site are unreliable and insufficient for hydropower development.
UC-121	Picacho North Dam	No	Low	Data indicates flows are too low for hydropower development, diverts only seasonal storm water flow
UC-122	Picacho South Dam	No	Low	Data indicates flows are too low for hydropower development, diverts only seasonal storm water flow
UC-123	Pineview Dam	-	-	Site already has hydropower developed or being developed
UC-124	Platoro Dam	Yes	High	Site has seasonal flows
UC-125	Provo Reservoir Canal	-	-	Title transfers are in progress, no longer a Reclamation site
UC-126	Red Fleet Dam	Yes	High	
UC-127	Rhodes Diversion Dam	No	Low	Model estimated that flows and head are too low for hydropower development, flows are less than 24 cfs 95% of the time and head is 7 feet
UC-128	Rhodes Flow Control Structure	No	Low	Structure is a valve and not a viable site for hydropower development
UC-129	Rhodes Tunnel	No	Low	Data indicates no head is available for hydropower development, site is underground
UC-130	Ricks Creek Stream Inlet	-	Low	Further analysis needs to be conducted at this inlet to determine hydropower potential
UC-131	Ridgway Dam	Yes	High	
UC-132	Rifle Gap Dam	Yes	High	
UC-133	Riverside Diversion Dam	No	Low	Site has dam safety issues, not a feasible site due to safety concerns
UC-134	S. Ogden Highline Canal Div. Dam	No	Low	Data indicates no head is available for hydropower development
UC-135	San Acacia Diversion Dam	Yes	Medium	
UC-136	Scofield Dam	Yes	High	Site has seasonal flows
UC-137	Selig Canal	Yes	Low	Site has seasonal flows
UC-138	Selig Diversion Dam	No	Low	Data indicates 10 feet of head available at site; field representatives indicated that flows at site are unreliable and insufficient for hydropower development.
UC-139	Sheppard Creek Stream Inlet	-	Low	Further analysis needs to be conducted at this inlet to determine hydropower potential
UC-140	Silver Jack Dam	Yes	High	

Site ID	Site Name	Hydropower Potential (yes/no) ¹	Data Confidence Level	Notes (including reason for no hydropower potential)
UC-141	Sixth Water Flow Control	Yes	Medium	
UC-142	Slaterville Diversion Dam	No	Low	Site has 8 feet head and low and infrequent flows for economical hydropower development
UC-143	Smith Fork Diversion Dam	No	Low	Site has 10 feet head and low and infrequent flows for economical hydropower development
UC-144	Soldier Creek Dam	Yes	High	
UC-145	South Canal Tunnels	Yes	Medium	
UC-146	South Canal, Sta 19+ 10 "Site #1"	Yes	Medium	
UC-147	South Canal, Sta. 181+10, "Site #4"	Yes	Medium	
UC-148	South Canal, Sta. 472+00, "Site #5"	Yes	Medium	
UC-149	South Canal, Sta. 72+50, Site #2"	-	Low	No flow data was available for Fairview, which feeds water into the South Canal Site #2. Further analysis needs to be conducted at this canal to determine hydropower potential
UC-150	South Canal, Sta.106+65, "Site #3"	Yes	Medium	
UC-151	South Feeder Canal	-	Low	Data available indicates that the maximum flow based on design capacity at this site is 60 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this canal site to determine hydropower potential. The site is also remote (14.1 miles of transmission line distance), which would increase development costs
UC-152	South Fork Kays Creek Stream Inlet	-	Low	Further analysis needs to be conducted at this inlet to determine hydropower potential
UC-153	Southside Canal	_	Low	Data available indicates that the maximum flow based on design capacity at this site is 240 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this canal site to determine hydropower potential
	Southside Canal, Sta 171+ 90 thru 200+			
UC-154	67 (2 canal drops)	Yes	Low	Less than 3 years of data
UC-155	Southside Canal, Sta 349+ 05 thru 375+ 42 (3 canal drops)	Yes	Low	Less than 3 years of data
UC-156	Southside Canal, Station 1245 + 56	-	Low	Data available indicates that the maximum flow based on design capacity at this site is 240 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this canal site to determine hydropower potential
UC-157	Southside Canal, Station 902 + 28	-	Low	Data available indicates that the maximum flow based on design capacity at this site is 240 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this canal site to determine hydropower

Hydropower Data Notes Potential Site ID Site Name Confidence (including reason for no hydropower potential) (yes/no)¹ Level potential Data indicates 13 feet of head available at site; field representatives indicated Spanish Fork Diversion Dam UC-158 that flows at site are unreliable and insufficient for hydropower development. No Low UC-159 Spanish Fork Flow Control Structure Yes Medium Data available indicates that the maximum flow based on design capacity at this site is 95 cfs. Further analysis needs to be conducted to collect seasonal flow

110 400	Spring City Types		Law	distribution and net head data at this tunnel site to determine hydropower
UC-160	Spring City Tunnel	-	Low	potential. Further analysis needs to be conducted at this inlet to determine hydropower
UC-161	Staight Creek Stream Inlet	-	Low	potential
UC-162	Starvation Dam	Yes	High	
UC-163	Starvation Feeder Conduit Tunnel	-	Low	Data available indicates that the maximum flow based on design capacity at this site is 300 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this tunnel site to determine hydropower potential. The site is also remote (7.6 miles of transmission line distance), which would increase development costs
UC-164	Stateline Dam	Yes	High	
UC-165	Station Creek Tunnel	-	Low	Data available indicates that the maximum flow based on design capacity at this site is 250 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this tunnel site to determine hydropower potential
UC-166	Steinaker Dam	Yes	High	Site has seasonal flows
UC-167	Steinaker Feeder Canal	No	Low	Data indicates no head is available for hydropower development, all the head available is being used to move water in the canal
UC-168	Steinaker Service Canal	-	Low	Data available indicates that the maximum flow based on design capacity at this site is 300 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this canal site to determine hydropower potential
UC-169	Stillwater Tunnel	Yes	Medium	
UC-170	Stoddard Diversion Dam	No	Low	Data indicates 8 feet of head available at site; field representatives indicated that flows at site are unreliable and insufficient for hydropower development.
UC-171	Stone Creek Stream Inlet	-	Low	Further analysis needs to be conducted at this inlet to determine hydropower potential
UC-172	Strawberry Tunnel Turnout	No	Low	Model estimated that head and flow is too low for hydropower development, 6-8 cfs flow and 2 feet of head
UC-173	Stubblefield Dam	-	-	Title transfers are in progress, no longer a Reclamation site

Site ID	Site Name	Hydropower Potential (yes/no) ¹	Data Confidence Level	Notes (including reason for no hydropower potential)
UC-174	Sumner Dam	Yes	Medium	
UC-175	Swasey Diversion Dam	No	Medium	Site has low seasonal flows about 4-5 months per year, model estimated that flows are too low and infrequent for economical hydropower development at 30 percent flow exceedance, 20 percent flow exceedance would be 47 cfs, head is 5 feet
UC-176	Syar Inlet	-	-	Duplicate site, same as Syar Tunnel
UC-177	Syar Tunnel	Yes	Medium	
UC-178	Tanner Ridge Tunnel	-	Low	This site is remote (6.1 miles of transmission line distance), which would increase development costs. Further analysis needs to be conducted at this tunnel site to determine hydropower potential
UC-179	Taylor Park Dam	Yes	High	
UC-180	Towoac Canal	-	Low	Further analysis needs to be conducted at this canal to determine hydropower potential
UC-181	Trial Lake Dam	No	Low	Site has low seasonal flows about 1-2 months per year, model estimated that flows are too low and infrequent for economical hydropower development at 30 percent flow exceedance, 20 percent flow exceedance would be 9 cfs, Data available indicates that the maximum flow based on design capacity at this
UC-182	Tunnel #1	_	Low	site is 1,675 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this tunnel site to determine hydropower potential
UC-183	Tunnel #2	_	Low	Data available indicates that the maximum flow based on design capacity at this site is 1,675 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this tunnel site to determine hydropower potential
UC-184	Tunnel #3	-	Low	Data available indicates that the maximum flow based on design capacity at this site is 730 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this tunnel site to determine hydropower potential
	Upper Diamond Fork Flow Control			
UC-185	Structure	Yes	Medium	
UC-186	Upper Diamond Fork Tunnel	-	-	Duplicate site, same Upper Diamond Fork Flow Control Structure
UC-187	Upper Stillwater Dam	Yes	Medium	
UC-188	Vat Diversion Dam	No	Medium	Site has low seasonal flows about 3-5 months per year, model estimated that flows are too low and infrequent for hydropower development at 30 percent flow exceedance, 20 percent flow exceedance would be 2 cfs
UC-189	Vat Tunnel	No	Low	Data indicates no head is available for hydropower development, all the head available is being used to move water in the tunnel

Site ID	Site Name	Hydropower Potential (yes/no) ¹	Data Confidence Level	Notes (including reason for no hydropower potential)
UC-190	Vega Dam	Yes	Medium	Site has seasonal flows
UC-191	Vermejo Diversion Dam	-	-	Title transfers are in progress, no longer a Reclamation site
UC-192	Washington Lake Dam	No	Low	Site has low and infrequent flows for economical hydropower development, flows are less than 20 cfs 95% of the time
UC-193	Water Hollow Diversion Dam	No	Low	Model estimated that flows and head are too low for hydropower development, flows are less than 6 cfs 95% of the time and head is 15 feet
UC-194	Water Hollow Tunnel	-	-	Duplicate site, same as Open Channel 2
UC-195	Weber Aqueduct	No	Low	Data indicates no head is available for hydropower development
UC-196	Weber-Provo Canal	Yes	Low	
UC-197	Weber-Provo Diversion Canal	Yes	Medium	
UC-198	Weber-Provo Diversion Dam	-	-	Duplicate site, same as Weber-Provo Canal
UC-199	Wellsville Canal	No	Low	Data indicates canal capacity is approximately 15 cfs; not enough flow available at site for hydropower development
UC-200	West Canal	No	Low	Model estimated that head is too low for hydropower development
UC-201	West Canal Tunnel	-	-	Duplicate site, same as West Canal
UC-202	Willard Canal	No	Low	Data indicates no head is available for hydropower development, all the head available is being used to move water in the canal
UC-203	Win Diversion Dam	No	Low	Data indicates no head is available for hydropower development
UC-204	Win Flow Control Structure	No	Low	Structure is a valve, not a viable site for hydropower development
UC-205	Yellowstone Feeder Canal	-	Low	Data available indicates that the maximum flow based on design capacity at this site is 88 cfs. Further analysis needs to be conducted to collect seasonal flow distribution and net head data at this canal site to determine hydropower potential
¹ Mod	el estimated hydropower potential at 30% flo	w exceedance		
- Sites	nave no potential at 30% flow exceedance	See "Notes" colu	mn and Chapter	r 5-Section 5.8 for information on hydropower potential at 20% exceedance

Chapter 2 Hydropower Site Data Collection

This page intentionally left blank.

Chapter 3 Site Analysis Methods and Assumptions

This chapter describes the methods and assumptions used for the sites' power potential and economic analysis. Figure 3-1 shows the general steps of the analysis.

This analysis estimates power production, economic benefits, and costs of the potential hydropower development at the sites, described in Sections 3.1, 3.2, and 3.3. The final calculation is a benefit cost ratio and internal rate of return (IRR) to evaluate the overall economic effectiveness of power production at each site, described in Section 3.4. The analysis is conducted using the Hydropower Assessment Tool, which is described in Chapter 4. The Boca Dam site in California in the Mid Pacific region is used as an example in this chapter to further explain how methods and assumptions were applied.

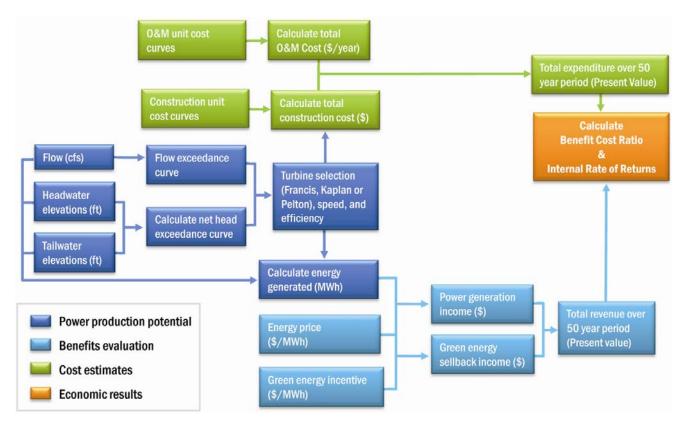


Figure 3-1 Resource Assessment Process Flow Chart

3.1 Power Production Potential

The first step to assess the feasibility of hydropower at a site is to determine the amount of power that can be produced at the site, which is primarily a product of the flow rate and head. Higher flow and higher head mean more available power. Data collection efforts described in Chapter 2 provided the flow and net head data needed to determine the power production potential. Flow rate and head measurements are used to define the hydropower system, including turbine capacity, type, and efficiency. Because of the broad geographic scope and preliminary planning level assessment, this analysis assumes that the hydropower plant would be located at the site (i.e., no extensive penstocks are assumed) and there would be one turbine operating unit. These assumptions should be revisited if a particular site if further analyzed. The following sections describe design factors and assumptions applied in the power production analysis.

3.1.1 Design Head and Flow

The analysis develops flow and net head exceedance curves using flow, head water, and tail water input data. Figures 3-2 and 3-3 show example flow and net head exceedance curves for the Boca Dam. Exceedance curves indicate the percentage of time a particular flow or head is possible for a given set of historic hydrologic and head data.

For this analysis, design flow and design head for the turbine are set at the 30 percent exceedance level. For purposes of this analysis, the 30 percent exceedance level represents a generally held industry standard which would result in an estimate in the range of the optimal installed capacity per dollar of capital investment. A lower exceedance level can be used, such as 20 percent, which would typically result in a higher installed capacity for the site; however it may also cause incremental costs to increase faster than incremental energy generated. Section 5.7 presents a sensitivity analysis of using a 20 percent exceedance level for selected sites.

For the Boca Dam site, based on the exceedance curves in Figures 3-2 and 3-3, 30 percent flow exceedance is 179 cfs and 30 percent net head exceedance is 91.5 feet. The installed capacity of the turbine is selected based on this flow and net head.

3.1.2 Turbine Selection and Efficiency

After the design flow and head are calculated for each site, a specific turbine type is selected for the site. In general, turbines can be classified as impulse turbines or reaction turbines. Impulse turbines operate in air, driven by one or more high velocity jets of water. Impulse turbines are typically used with highhead systems and use nozzles to produce high velocity jets. Reaction turbines run fully immersed in water and are typically used in lower-head systems.

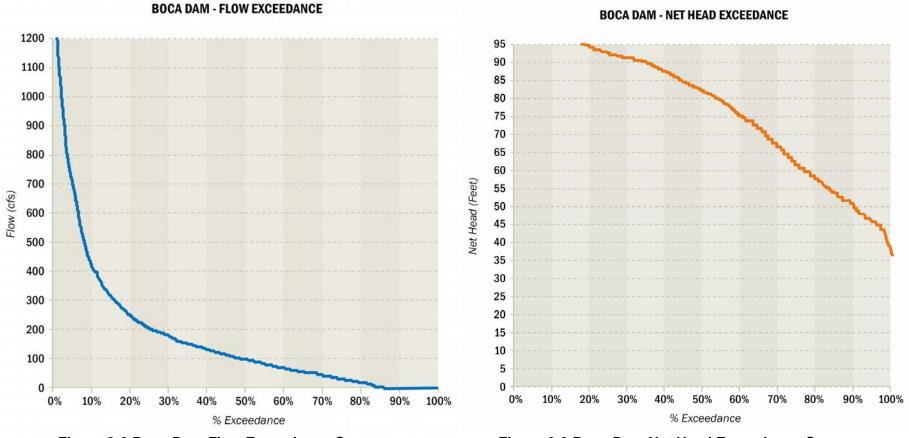


Figure 3-3 Boca Dam Net Head Exceedance Curve

In most cases, the impulse and reaction turbines in use today are designs named after their inventors. Examples of impulse turbines include Pelton and Turgo. Examples of reaction turbines include Francis, Kaplan, and Propeller. This analysis assigns Pelton, Kaplan, Francis turbine to each potential hydropower site based on the design head and flow and typical operating ranges of the turbine types.

Figure 3-4 is the turbine selection matrix used in the analysis. The matrix also includes a low-head turbine, which, for this analysis, is considered a modified Francis turbine. Based on the calculated design head of 91.5 feet and design flow of 179 cfs at the Boca Dam site, the turbine selection matrix indicates that a Francis turbine should be selected for this site.

Turbines operate at varying efficiency levels. The turbine runs most efficiently when it turns exactly fast enough to consume all the energy of the water. Hill diagrams, or performance curves, are developed to show efficiency at different operating percentages of design flow and head. Hill diagrams for Pelton, Francis, and Kaplan turbines are used in the analysis to evaluate turbine efficiency at different operating levels.

The following sections further describe the turbine types and efficiency levels used in the hydropower analysis.

500 kW Canyon Pelton Turbine for Colorado Springs Utility

Pelton Turbine

Pelton turbines are widely used in hydropower plants with high heads. Pelton turbines are impulse type turbines that use the kinetic energy in water. When water passes from a pressurized pen stock to the nozzle, it forms a jet stream which forces the turbine rotation, through impact on the turbine runner buckets. The runner is fixed on a shaft, and the rotational motion of the turbine is transmitted by the shaft to a generator. These turbines operate economically over a broad range of flows and heads.

Figure 3-5 depicts an example typical hill diagram for a Pelton turbine. The bounded region in the diagram

shows the approximate limits of normal operation with head on the horizontal axis and power on the vertical axis. The curves shown on the diagram are corresponding efficiencies for given heads versus power output. The flow rate is not shown on the diagram and instead is calculated based on the net head, power output, and efficiency for any point of operation.

TURBINE SELECTION MATRIX

							_		_			_			1				Flow	(cfs)								_								
0	0	10	20	30	40	50	60	70	80	90	100	200	300	400	500	600	800	1000	1200	1400	1600	1800	2000	2200	2400 26	00 280	3000	3200	3400	3600	3800	4000	4200	4400	4600	4800
10					-	-	-	-	-	_																										
20					-		-																													
30					-	_																														
40																																				
50																																				
60																																				
70																																				
80																																				
90																																				
100																																				
200																																				
300																																				
400								_	_	_		_														_										
500								_																												
600								_		_																										
700 800							_	_	_	_																										
900								_		_			_																							
.000								_		_																										
1100																																				
1200								_	-	_																										
1300									-																											
.400								_		_																_										
.500																																				
600																																				
1700																																				
800																																				
.900																																				
2000																																				
2100																																				
2200																																				
300																																				
2400																																				
2500																																				
2600																																				

Head (ft)

Figure 3-4 Iurbine Selection Matrix

Chapter 3 Site Analysis Methods and Assumptions

This page intentionally left blank.

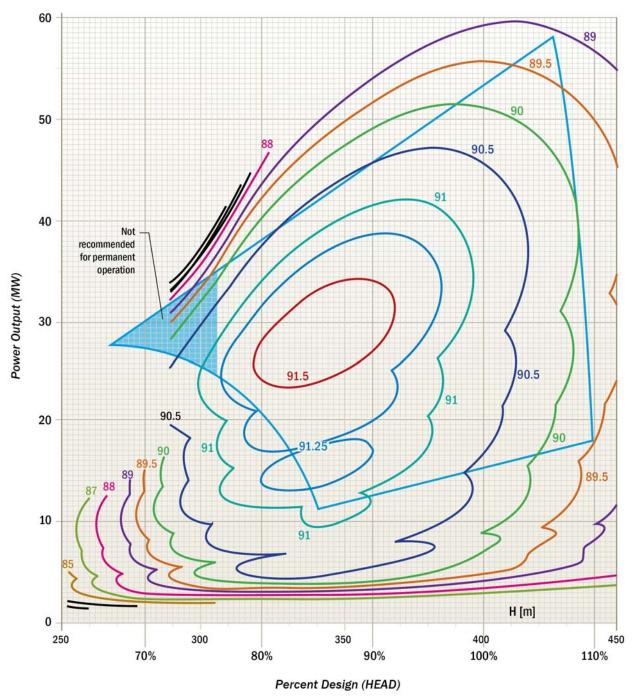


Figure 3-5 Pelton Turbine Hill Diagram

Kaplan Turbine

Kaplan turbines are primarily used in the low head range with large volumes of water. The turbine is made up of adjustable runner blades and adjustable wicket gates that control the flow. The adjustable runner blades enable high efficiency even in the range of partial load; and, there is little drop in efficiency due to head variation or load, but over a more narrow range than Pelton turbines.

Figure 3-6 shows a generalized hill diagram for a Kaplan turbine depicting efficiencies for a range of operating heads and flows. A typical Kaplan turbine can operate between 65 percent and 125 percent of the design head and down to roughly 20 percent of the design flow.

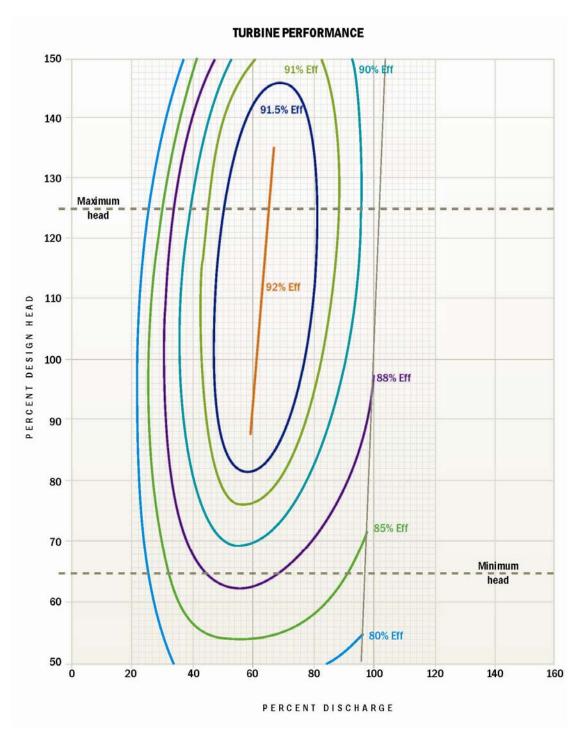


Figure 3-6 Kaplan Turbine Hill Diagram

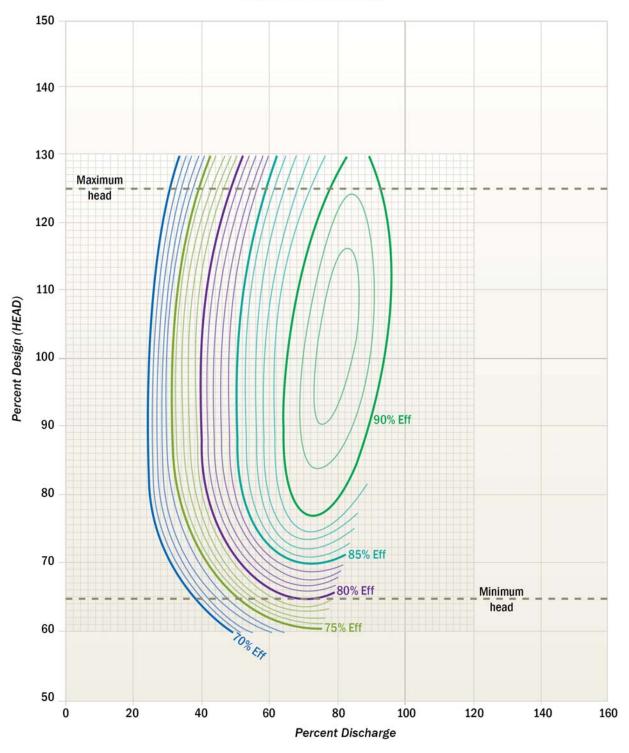
Francis Turbine

Francis turbines are primarily used for medium to high head hydropower plants. The Francis runner is typically fitted directly to the generator shaft, which

720 kW Canyon Francis for Swalley Irrigation District, Ponderosa Hydro

supports compact construction and low maintenance. Francis turbines are characterized by their optimal efficiency and high speed ranges. Francis turbine can adjust quickly to varying flows. The turbines typically have a worm-scroll case structure that directs water flow in easily and smoothly, and therefore, improves the overall turbine efficiency.

Figure 3-7 shows a generalized hill diagram for a Francis turbine. A typical Francis turbine has high efficiencies in a range of 65 percent to 125 percent of design head and can have relatively high efficiencies down to about 25 percent of the design flow. For


example, the Boca Dam site turbine, with a design head of 91.5 feet and flow of 179 cfs, would operate most efficiently when head is between about 82 feet and 100 feet, and can operate efficiently when flow is about 150 cfs.

Low-Head Turbine

A number of the Reclamation sites that were analyzed had relatively low heads (less than 20 feet) and/or low flows (less than 10 cfs). These sites were generally sized at less than 100 kW. In these cases, a downsized Francis turbine with a set operating efficiency of 75 percent was used to estimate power production.

3.1.3 Power Production Calculations

Using available head and flow data, selected design head, flow, turbine type and efficiency, the analysis estimates average monthly and annual power generation at each site. Table 3-1 shows monthly average capacity and energy produced, and plant capacity factors, at a Boca Dam site. Average capacity indicates the average kW of capacity for each month. For example, the plant design capacity (also known as installed or nameplate capacity) is 1,184 kW (1.2 MW), but the machine only produces the equivalent power 43 percent (plant factor) of the time. Therefore, the average plant capacity is approximately 43 percent of the installed capacity. Average energy is the average energy production each month at the site. The average energy values are used to calculate power generation benefits, described in Section 3.2.1.

TURBINE PERFORMANCE

Figure 3-7 Francis Turbine Hill Diagram

Months	Average Operating Capacity (kW)	Average Energy (MWh)					
January	265	191					
February	290	195					
March	384	276					
April	684	493					
May	849	611					
June	720	519					
July	651	469					
August	522	376					
September	573	412					
October	516	372					
November	363	262					
December	272	196					
Annual		4,370					
Pla	ant Design Capacity (kW)	1,184					
Ave	erage Plant Capacity (kW)	508					
	Plant Peak Capacity (kW)	1,320					
	Plant Factor	0.429					

Table 3-1 Generation Data for Boca Dam Site (for30 year data set)

3.2 Benefits Evaluation

This analysis evaluates the economic benefits of potential hydropower development at the identified sites. The conceptual basis for the economic benefits of a new hydropower facility is society's willingness to pay for additional energy. The economic procedures for assessing willingness to pay values can be costly and time consuming, especially when considering the number, size, and geographic range of the sites included in this report. Therefore, an expedited method of estimating benefits was necessary.

Federal planning supports valuing the benefits of new hydroelectric power by use of wholesale market prices, which is the method used in this analysis. Because a focus of this report is identifying potential opportunities from a private hydropower development perspective, it is important to recognize other cost savings, or benefits, to a private developer. Given the current national emphasis on renewable energy development, green incentive programs are available that could reduce total development costs. This analysis quantifies potential green incentives available to support hydropower development based on the best available data.

The following sections further describe methods and data to quantify economic benefits from power generation and green incentives.

3.2.1 Power Generation

The Northwest Power and Conservation Council (Council) 6th Northwest Conservation and Electric Power Plan (February 2010) provided projections of regional wholesale power market prices, which were used to quantify economic benefits from new power generation. The Council used the AURORA^{xmp®} Electric Market Model to forecast market prices. Prices are forecast each year through 2030 and were projected to increase in real terms at a rate above inflation. Hourly prices in the model are based on the variable cost of the most expensive generating plant or increment of load curtailment needed to meet load for each hour of the forecast period. With AURORA^{xmp®}, the Council simulated plant dispatch in 16 load-resource areas making up the Western Electricity Coordinating Council electric reliability area. The forecast prices vary across the load resource areas.

Because of the large geographic scope of this report, the hydropower assessment is performed on a state level. Thirteen of the 16 AURORA^{xmp®} load resource areas are in the western United States. In some instances, the 13 areas did not correspond with a state boundary; in these cases, the prices were configured to best represent an entire state. In addition, the eastern tier of Reclamation states was not included in the 13 areas; for these states, the average prices across the 13 areas were utilized. Table 3-2 summarizes how the areas in AURORA^{xmp®} were adjusted to a state basis for use in the hydropower assessment.

Resource Assessment State	Corresponding AURORA ^{xmp®} Area(s)
Arizona	Arizona
California	Average of California North and California South
Colorado	Colorado
Idaho	Idaho South
Kansas	Average of 13 AURORA ^{xmp®} areas
Montana	Montana East
Nebraska	Average of 13 AURORA ^{xmp®} areas
Nevada	Average of Nevada North and Nevada South
New Mexico	New Mexico
North Dakota	Average of all 13 AURORA ^{xmp®} areas
Oklahoma	Average of all 13 AURORA ^{xmp®} areas
Oregon	Pacific Northwest West
South Dakota	Average of all 13 AURORA ^{xmp®} areas
Texas	Average of all 13 AURORA ^{xmp®} areas
Utah	Utah
Wyoming	Wyoming
Washington	Pacific Northwest

 Table 3-2 Development of Prices Using Aurora^{xmp®} Areas

The analysis uses monthly "all hours" prices, which incorporate peak and offpeak prices. Prices were adjusted from 2006 to 2010 dollars to match construction and O&M costs using the AURORA^{xmp®} general inflation index of 1.098. The analysis calculates benefits over a 50 year period of analysis; therefore, energy prices are required through 2060. The analysis assumes that the monthly 2030 forecast prices remain constant through 2060. Table 3-3 shows "all hours" energy price forecasts for January for five states in the hydropower assessment. There are similar price forecasts for each month for each state in the analysis. The prices for California are used to calculate power benefits for the Boca Dam site. The prices were multiplied by monthly energy generation to calculate the economic benefit. The Hydropower Assessment Tool contains the complete price forecast data.

Year	Arizona	California	Colorado	Idaho	Kansas
2014	\$55.39	\$60.99	\$54.85	\$54.53	\$56.21
2015	\$60.17	\$65.97	\$59.55	\$59.33	\$60.91
2016	\$63.42	\$69.52	\$63.75	\$63.19	\$64.76
2017	\$66.55	\$72.27	\$67.97	\$66.81	\$68.19
2018	\$68.40	\$73.97	\$70.31	\$68.70	\$70.25
2019	\$70.17	\$75.96	\$71.92	\$70.96	\$72.20
2020	\$71.79	\$77.53	\$74.34	\$72.60	\$74.01
2021	\$73.37	\$79.47	\$75.24	\$74.37	\$75.77
2022	\$75.02	\$81.35	\$76.00	\$75.75	\$77.21
2023	\$76.92	\$84.03	\$77.25	\$77.74	\$79.34
2024	\$77.93	\$85.39	\$78.91	\$78.87	\$80.61
2025	\$79.80	\$87.46	\$79.72	\$80.52	\$82.23
2026	\$80.46	\$88.67	\$80.02	\$81.43	\$83.25
2027	\$81.16	\$89.63	\$79.92	\$82.21	\$83.88
2028	\$81.94	\$90.86	\$79.86	\$83.34	\$84.93
2029	\$82.48	\$91.57	\$80.42	\$84.29	\$85.77
2030-2060	\$83.23	\$92.66	\$81.20	\$84.94	\$86.66

Table 3-3 All-hours Price Forecasts for January from 2014 through 2060 (\$/MWh)

3.2.2 Green Incentives

A wide variety of financial incentives for the implementation of renewable energy generation are available for new facilities within the United States; however, hydropower generation is not eligible in many programs. Therefore, even with the wide range of incentives available, incentives are limited for hydropower. This analysis incorporated financial incentives currently available for the generation of hydropower. This analysis focuses on performance-, or generation-, based incentives, which generally include a utility providing cash payment to a renewable energy generator based on the amount of kilowatt hours (kWh) of renewable energy generated. Performance-based incentives are potentially available for hydropower generation for Arizona, California, and Washington states and at the Federal level.

Installation-based incentives, in the form of rebates, tax credits, or grants, are also available for new renewable energy generation. These incentives vary depending on location, ownership, generation capacity, and date of implementation and must be evaluated on a case by case basis. As a result, installation-based incentives are not included in the calculation of green benefits, but are described in further detail in Appendix B.

Federal Performance-based Incentives

The federal renewable electricity production tax credit is a per-kilowatt-hour tax credit for electricity generated by qualified energy resources and sold by the taxpayer to an unrelated person during the taxable year. Credits are generally given for 10 years following in service date. The tax credit is \$0.011 per kWh for facilities in service by December 31, 2013. If sites are developed by Reclamation, they would not be eligible for the Federal incentive, but could qualify for state-sponsored incentives, described below.

State Performance-based Incentives

Performance-based incentives at the state level are only available for Arizona, California, and Washington. Arizona and Washington allow the state incentives to be stacked with the Federal incentive described above. Many of the remaining states have a wide range of financial incentives for renewable energy but those incentives do not include hydropower generation. Some states do not have any performance-based incentive programs available. Table 3-4 summarizes performance-based incentives for all states included in the analysis for hydropower. Appendix B provides further detail on implementation requirements for performance-based incentives.

State	Incentive Value	Notes
Arizona	\$0.054/kWh	20 year agreement, can be stacked with Federal incentive ¹ .
California	\$0.0984/kWh	Applicable to small hydropower facilities up to 3 MW, 20 year agreement, cannot be stacked with Federal incentive or participate in other state programs.
Colorado	Use Federal incentive rate	No state performance-based incentives available
Idaho	Use Federal incentive rate	No state performance-based incentives available
Kansas	Use Federal incentive rate	No state performance-based incentives available

State	Incentive Value	Notes
Montana	Use Federal incentive rate	Performance-based incentives do not apply to hydropower
Nebraska	Use Federal incentive rate	No state performance-based incentives available
Nevada	Use Federal incentive rate	Performance-based incentives available, but cannot be quantified at this time
New Mexico	Use Federal incentive rate	Performance-based incentives do not apply to hydropower
North Dakota	Use Federal incentive rate	Performance-based incentives do not apply to hydropower
Oklahoma	Use Federal incentive rate	No state performance-based incentives available
Oregon	Use Federal incentive rate	No state performance-based incentives available
South Dakota	Use Federal incentive rate	No state performance-based incentives available
Texas	Use Federal incentive rate	Performance-based incentives do not apply to hydropower
Utah	Use Federal incentive rate	Performance-based incentives do not apply to hydropower
Wyoming	Use Federal incentive rate	No state performance-based incentives available
Washington	\$0.21/kWh	Available in first year of service, can be stacked with Federal incentive

Table 3-4 Available Hydropower Performance Based Incentives

Notes:

1 - Federal incentive rate is \$0.011 per KWh for the first 10 years of service

If the site is in Arizona, California, or Washington, the state incentive was applied, with applicable rules indicated in Table 3-4. The Federal incentive was also included, if allowed, in total green incentive benefits. Note California renewable energy programs do not allow stacking with the Federal incentive program. Green energy benefits for all other states were calculated using the Federal incentive rate. For example, the Boca Dam site is in California; therefore, the State incentive rate of \$0.0984 for the first 20 years was applied to calculate green energy benefits. The Federal incentive rate of \$0.011 cannot be stacked on to the California state incentive rate.

3.3 Cost Estimates

This analysis incorporates cost estimating functions for construction costs, other non-construction development costs, and for the various annual expenses that would be expected for operations. Construction costs include those for the major equipment components, ancillary mechanical and electrical equipment, and the civil works. In estimating the total cost of development, various costs are added to the construction cost such as those required for licensing and a menu of potentially required mitigation costs, depending on the specifics of the project. The annual operation and maintenance expenses encompass water and hydraulic expenses, fees and taxes in addition to maintenance expenses, and funds for major component replacement or repair.

Cost estimates for the individual components were based on studies previously performed by INL in 2003 and from more recent experience data. The INL analysis was based on a survey of a wide range of cost components and a large number and sizes of projects and essentially involved a historical survey of costs associated with different existing facilities proved effective in estimating costs on a wide physical and geographic range of potential sites. These costs included licensing, construction, fish and wildlife mitigation, water quality monitoring, and O&M, as well as other categories of costs with the cost factors dependent on the size of the generating capacity of a proposed facility. INL acquired historical data on licensing, construction, and environmental mitigation from a number of sources including Federal Energy Regulatory Commission (FERC) environmental assessment and licensing documents, U.S. Energy Information Administration data, Electric Power Research Institute reports, and other reports on hydropower construction and environmental mitigation.

Cost estimating equations were then derived through generalized least squares regression techniques where the only statistically significant independent variable for each cost estimator was plant capacity. All data in the INL report were escalated to 2002 dollars. For purposes of the current study, the cost estimating equations were updated to 2010 by escalating the INL equations based on applicable Reclamation cost indices.

Appendix C provides a summary of the cost estimating equations.

3.3.1 Construction Costs

Total construction costs within the assessment tool include those for civil works, turbines, generators, balance of plant mechanical and electrical, transformers and transmission lines. Other additions include contingencies, sales taxes, and engineering and construction management. These construction costs reflect those that would be applicable to all projects but do not include potential mitigation measures which are subsequently included in the total development cost.

In estimating these costs, project information carried over from other worksheets within the model includes the plant capacity, turbine type, the design head, generator rotational speed, and transmission line length and voltage. Applicable cost equations are then applied to develop estimates for the specific cost categories. Applied to the summation of these costs is a contingency of 20 percent, state sales tax based on the project location, and an assumed engineering and construction management cost of 15 percent.

3.3.2 Total Development Costs

The total development cost includes the construction cost with the addition of a variety of other costs that are, or may be, required. Those additional costs, applicable to all projects include licensing and/or lease of power privilege costs and the transmission-line right-of-way.

Other costs that may apply, depending on the specific site, include fish passage requirements, historical and archaeological studies, water quality monitoring, and mitigation for fish and wildlife, and recreation. The magnitude of the above mitigation costs is dependent on the installed capacity of the project. In general, mitigation costs would increase the larger the project. The constraints analysis, described in Section 3.5, was used to determine if the above environmental and mitigation costs should be applied to the total development cost. If a site was in an area of a potential constraint, costs were assumed to apply to the site. Table 3-5 summarizes how regulatory constraints were interpreted as mitigation costs. For some sites, Reclamation's area offices had additional data on fish and wildlife, fish passage, and water quality issues at particular sites. Relevant mitigation costs were also added based on the local data provided. In the example for the Boca Dam site, the Reclamation area office indicated a Recreation and Historical & Archeological constraint could be present at the site; therefore, mitigation costs were added to the total development costs. In general, mitigation costs are very site-specific and should be reevaluated if a site is further analyzed. Mitigation costs could differ significantly than those presented in this analysis. Further, additional constraints may exist at the sites that are not identified in this analysis, which could also add to total development costs.

Mitigation Cost Categories	Constraints Applicable to Mitigation Costs	
Fish and Wildlife	Critical Habitat, National Wildlife Refuge	
Recreation	National Forest, National Park, National Historic Area, National Monuments, Wild and Scenic Rivers, Wilderness Preservation Areas, National Wildlife Refuge	
Historical and Archaeological	Indian Lands, National Historic Areas	
Water Quality	Need more site specific information to apply water quality mitigation costs. Received data for some sites from Reclamation area offices. Some monitoring is included in annual O&M costs as water expenses	
Fish Passage	Need more site specific information to apply fish passage costs. Received data for some sites from Reclamation area offices.	

Table 3-5 Association Between Mitigation Costs and Constraints

3.3.3 Operation and Maintenance Costs

The O&M costs reflect a variety of expenses and fees expected for most projects. These expenses include fixed and variable O&M expenses, federal fees or charges from FERC or other agencies, charges for transmission of power generated or interconnection fees, insurance, taxes, overhead, and the long-term funding of major repairs. The estimates for these expenses are based on either the installed capacity or the total construction cost, with several costs estimated as fixed lump sums. Similar to power prices and total development costs, O&M costs are expressed in 2010 dollars.

3.3.4 Cost Calculations

Table 3-6 summarizes the costs calculated for the Boca Dam site based on the above discussion of construction, development, and O&M costs. Appendix C includes cost equations. Cost calculations are similar for all sites. In general, turbine and generator costs are the highest components of total construction costs. Boca Dam site is 1.14 miles away from a transmission line, which is a relatively short distance, and results in lower transmission line construction costs. As noted above, distance to the transmission line does not necessarily indicate that an interconnection to the line is permissible. Further evaluation of the site may result in different transmission costs. The total development cost and annual O&M costs are used to calculate the present value of costs for the benefit cost analysis.

The cost per installed capacity (\$/installed kW) is also calculated for each site to indicate development feasibility as related to costs. Potential hydropower sites that have unit costs in the range of less than \$3,000-\$6,000/installed kW are typically more feasible than sites with higher unit costs. The Boca Dam site has a calculated unit cost of \$3,711/kW.

Cost Component	Cost (\$)	
Total Direct Construction Cost	3,020,666	
Civil Works	413,583	
Turbine(s)	651,112	
Generator(s)	382,846	
Balance of Plant Mechanical	130,222	
Balance of Plant Electrical	133,996	
Transformer	48,109	
Transmission-Line	262,200	
Contingency (20%)	404,414	
Sales Taxes	200,185	
Engineering and CM (15%)	394,000	
Total Development Costs	4,393,028	
Licensing Cost	0	
Total Direct Construction Cost	877,844	
T-Line Right-of-Way	3,020,666	
Fish & Wildlife Mitigation	41,455	

 Table 3-6 Example Costs for Boca Dam Site

Cost Component	Cost (\$)
Recreation Mitigation	0
Historical & Archeological	306,261
Water Quality Monitoring	146,802
Fish Passage	0
Annual O&M Expense	144,379
Fixed Annual O&M	29,509
Annual Variable O&M	29,760
FERC Charges	1,676
Transmission / Interconnection	10,000
Insurance	9,062
Taxes	36,248
Management / Office / Overhead	15,103
Major Repairs Fund	3,021
Reclamation / Federal Administration	10,000

 Table 3-6 Example Costs for Boca Dam Site

3.4 Benefit Cost Ratio and Internal Rate of Return

The final step of the analysis is the calculation of the benefit cost ratio and IRR. Both are calculated over the 50-year period of analysis, 2011 to 2060. The construction period is assumed to be 3 years for all sites. Annual O&M costs begin after construction of the site is complete. Benefits, both power production and green energy benefits, also begin after construction is complete.

The benefit cost ratio compares the present value of benefits during the period of analysis to the present value of costs. The present value is calculated using the Fiscal Year 2010 Federal discount rate of 4.375 percent. A benefit cost ratio greater than 1.0 indicates the quantified benefits exceed costs for the project.

The IRR is an alternate measure of the worth of an investment. It is the discount rate that makes the present value of benefits equal to the present value of costs. Investments with higher IRRs are more economically favorable than investments with lower IRRs. IRR can be computed as a negative value, which clearly indicates that the project is uneconomic. In these cases, the results show a "negative" rather than a negative numeric estimate, due to limitations in Excel.

Table 3-7 summarizes the benefit cost ratio and IRR calculated for the Boca Dam site. The analysis presents the benefit cost ratio and IRR with and without green incentive benefits. The same calculations are made for all sites with available data. Boca Dam is a good example of a marginal project made economically feasible after the green incentive in California is taken into account.

Present Worth of Costs ¹ (million)	\$6.5	
Present Worth of Benefits ¹ (with Green Incentive) (million)	\$11.0	
Present Worth of Benefits ¹ (w/o Green Incentive) (million)	\$5.9	
Benefit Cost Ratio (with Green)	1.68	
IRR (with Green)	11.3%	
Benefit Cost Ratio (w/o Green)	0.89	
IRR (w/o Green)	3.4%	
Note:		
All costs in 2010 dollars		
¹ - Total and Present Value Costs Calculated over 50-year Period of Analysis at 4.375% discount rate		

Table 3-7 Boca Dam Site Benefit Cost Ratio and IRR
Summary

3.5 Constraints Analysis

For this analysis, constraints are defined as land or water use regulations that could potentially affect development of hydropower sites. Constraints can either block development completely or add significant costs for mitigation, permitting, or further investigation of the site. Table 3-5 summarizes how constraints were incorporated into the development costs for a site. Some sites have existing development constraints, such as existing permits or rights to develop a site are already issued to a particular entity. Table 2-3 identifies development rights on sites that are known to Reclamation. The regulatory constraints analysis does not consider existing development rights.

3.5.1 Potential Regulatory Constraints

This study considers the following regulatory designations as potential constraints to hydropower development. Some constraints, such as National Parks, prohibit development within regulatory boundaries. For other constraints, management agencies would need to be consulted for potential development of a site. There may be other constraints applicable to each site. This is a broad overview of potential regulatory constraints; feasibility level analysis could identify additional constraints, some that may prohibit development at the site.

• **National Wildlife Refuges** – public lands and water set aside to protect and restore fish and wildlife habitat. Allows some recreational uses including fishing, hunting, observation, photography, education, and

interpretation. United States Fish and Wildlife Service (USFWS) manages the National Wildlife Refuge System.

- Wild and Scenic Rivers selected rivers classified as wild, scenic, or recreational to be preserved in free-flowing conditions. Designation neither prohibits development nor gives the federal government control over private property. The Bureau of Land Management (BLM), National Park Service (NPS), USFWS, and US Forest Service (USFS) can administer the National Wild and Scenic Rivers System.
- National Parks lands reserved for natural, scenic, and historic properties for use by current and future generations. Established as an act of the United States Congress. National Park Service manages National Park System. Hydropower development is not allowed in National Parks.
- National Monuments historic landmarks, historic and prehistoric structures, and other objects of historic or scientific interest. The President can declare a National Monument without the approval of Congress. BLM, NPS, USFWS, or USFS can administer National Monuments.
- Wilderness Study Areas lands managed to preserve natural conditions, but are not included in the National Wilderness Preservation System until Congress passes wilderness legislation. Some WSAs permit motorized uses, such as off-road vehicles. Bureau of Land Management manages Wilderness Study Areas.
- Critical Habitat lands designated as essential to the conservation of a species lists on the Federal Endangered Species Act. Designation does not set up a preserve or refuge and does not necessarily prohibit development. Applies when federal funding, permits, or projects are involved. USFWS and National Oceanic and Atmospheric Administration administer the Endangered Species Act.
- Wilderness Preservation Area lands managed to preserve natural conditions under the National Wilderness Preservation System. Activities restricted to non-motorized uses. BLM, NPS, USFWS, or USFS own and administer Wilderness Preservation Areas.
- **National Forest** forest and woodland areas managed by the USFS. Commercial uses, such as timber harvesting, livestock grazing are permitted, as well as recreation uses.
- **National Historic Areas** protected areas of national historic significance including districts, sites, buildings, structures, or other

historic objects. Listed on the National Register of Historic Places. NPS administers National Historic Areas.

• **Indian Lands** - lands with boundaries established by treaty, statute, or executive or court order, recognized by the Federal government as territory in which American Indian tribes have primary governmental authority. The Bureau of Indian Affairs administers land held in trust for American Indians, Indian tribes, and Alaska Natives.

3.5.2 Constraint Mapping

The above regulatory constraints have been mapped using Geographic Information System (GIS) data. Figure 3-8 shows the constraint boundaries mapped within Reclamation's regions. Appendix F discusses sources for GIS data. Using site coordinate data, the hydropower assessment sites were added to the constraints maps. If a site is close to or within a constraint area, it was assumed that the regulatory constraint is applicable to the site. As discussed in Section 3.3.2, the appropriate development costs were then applied to the site.

3.5.3 Local Information for Fish and Wildlife and Fish Passage Constraints

Reclamation's regional and area offices provided additional information on potential fish and wildlife and fish passage constraints. Fish and wildlife and fish passage issues could add significant development costs to a project site. Although this analysis cannot identify specific issues for each site, it has attempted to capture if potential issues may be present at the site. If Reclamation's offices identified that fish and wildlife and fish passage were a potential constraint at the site, mitigation costs were added to the total development costs of the site. As noted previously, depending on specific issues, costs could differ significantly from those used in the analysis. Because of the preliminary nature and geographic scope of the analysis, all sites could not be evaluated individually for fish and wildlife concerns.

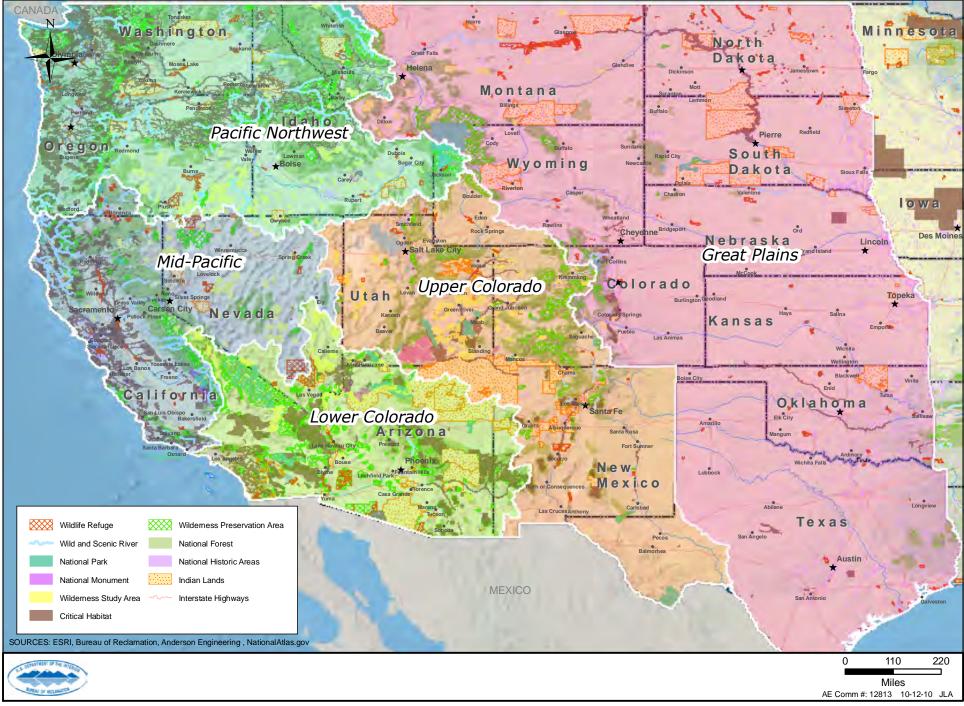


Figure 3-8 : Regulatory Constraints

This page intentionally left blank.

Chapter 4 Hydropower Assessment Tool

Reclamation developed the Hydropower Assessment Tool to estimate potential energy generation and economic benefits at the identified Reclamation facilities. The Hydropower Assessment Tool incorporates all the analysis components and assumptions described in Chapter 3. Data described in Chapter 2, including the state the site is located in, flow, head water and tail water elevation, and transmission line distance, is required for input into the model at a minimum. Appendix D includes a detailed user's manual for the Hydropower Assessment Tool. This chapter describes the model software, components, uses, and limitations.

4.1 Model Software

The Hydropower Assessment Tool is an Excel spreadsheet model with embedded macro functions programmed in Visual Basic. Microsoft Excel 2007 was used to develop the model.

4.2 Model Components

The Hydropower Assessment Tool spreadsheet includes 15 separate tabs or worksheets, including several input data sheets, worksheets that contain information used as databases within the model, and worksheets that perform calculations. The calculations are based on the data input for a specific site and from the internal databases. The worksheets are set up in user friendly and logical sequence with only two worksheets requiring input from the user, if sites are in the assessment study area. This section summarizes the worksheets in the model; the bold headers below are the actual names of the worksheets in the model. Appendix D is a user's manual for the model.

- **USBR** includes the Disclaimer Statement and a link to the Start worksheet.
- **Start** includes instructions for use of the model and cells where nonhydrologic inputs (state, transmission line voltage and distance, and constraints) are made. This worksheet also includes the buttons to run the model. There are three steps to running the model, which should be run in sequence from top to bottom. The model run is complete when the Results worksheet is displayed.

- **Input Data** where the daily flow data, head water and tail water elevation is input. A minimum of 1 year of data is required and there can be no blanks in the sequence.
- **Flow Exceedance** develops and displays the flow duration curve based on input flow data.
- Net Head Exceedance develops and displays the net head duration curve based on input head water and tail water elevation data.
- **Turbine Type** includes the turbine selection matrix (Figure 3-4) and selects a turbine based on 30 percent flow and net head exceedance. Also includes Pelton, Francis, and Kaplan turbine efficiencies tables based on Hill diagram performance curves and a generator speed matrix used in the cost calculations.
- **Generation** performs the power and energy generation calculations.
- **Power Exceedance** shows the power exceedance curve calculated based on generation calculations in the previous worksheet.
- **Plant Cost** calculates cost estimates for construction, total development cost, and estimated annual costs.
- **BC Ratio and IRR** presents the stream of benefits and costs over the 50-year period of analysis and calculates the benefit cost ratio and IRR.
- **Results** presents a comprehensive summary of results of energy generation calculation and the economic analysis.
- Other State allows the user to input the green incentives and price projection values for states outside of the 17 western states in Reclamation's regions. If the user selects "Other" in the Project Location drop down menu in the Start worksheet, these values must be entered.
- **Price Projections** includes the monthly price forecasts through 2060 for each state included in the analysis to calculate power generation benefits.
- **Green Incentives** includes the performance-based green incentive values used for each state to calculate green incentive benefits.
- **Templates** shows the input data required in the model, in the appropriate format to run the model.

4.3 Model Usage

The Hydropower Assessment Tool can be used in the evaluation of any potential hydropower site that has a continuous period of daily flow records, defined head water and tail water elevations, and the distance to the nearest transmission line. The model can use this minimum amount of data to perform the complete evaluation. For those sites that would likely be required to implement mitigation measures, a menu of options is provided that when selected, estimated additional costs for the selected mitigation measure is added to total development costs.

The Hydropower Assessment Tool is intended for use as a preliminary evaluation of potential hydropower sites and is valuable for informational purposes to support further evaluation of a potential site. It includes general, industry accepted assumptions for site development, including installed capacity and turbine selection and efficiency. The tool also considers appropriate project costs and economic benefits to indicate potential economic viability of a site. The model uses a "base-load" operation with no hour to hour shaping of releases to match load. Under a base-load operation, it is assumed that a power plant would not affect water deliveries from the facility.

The Hydropower Assessment Tool does not indicate feasibility of a site. Reclamation has made the Hydropower Assessment Tool available for public use with the following disclaimer statement:

> "This is an "open source" software tool developed by the Bureau of Reclamation (Reclamation) and the contractor Anderson Engineering for the Hydropower Resource Assessment at Existing Reclamation Facilities Report, and it has been made available for public use. It is important to recognize that the tool has been developed using broad power and economic criteria, and it is only intended for preliminary assessments of potential hydropower sites. This tool cannot take the place of a detailed hydropower feasibility study. There are no warranties, express or implied, for the accuracy or completeness of or any resulting products from the utilization of the tool."

4.4 Application and Limitations

The model is generally applicable to sites that are undeveloped from a hydroelectric perspective but do have some infrastructure in place that would assist in development, such as a small dam or water conveyance feature. Although it can be used to analyze other sites, the cost estimating portion of the model would likely contain increased error in the results as it does not account for substantial features such as new dams. In these cases, additional cost estimates for such features would need to be made and put into the cost estimating portion of the model (in the Plant Cost worksheet) manually.

Limitations of the model are related to its intended use as a planning level tool for preliminary evaluations of potential hydroelectric sites. Assumptions in the model were simplified to apply to 530 sites that had varying infrastructure (reservoirs, diversion dams, canals, etc.), broad range of flow and net head values, and were spread across 17 states. The model can analyze sites with flows up to 5,000 cfs, which is adequate for sites analyzed in the Resource Assessment. Most sites have flows well below 5,000 cfs. The model was constructed to analyze sites in the western 17 states. Selecting the appropriate state is important for benefits calculations. The tool has an option for other states, but the user must input energy prices and green incentives manually into the Other State worksheet.

Hydropower plants can be designed to meet specific site characteristics. For example, a penstock can be installed to control flow, multiple turbines can be installed to maximize power production, or turbines can be specified to meet various operating conditions. Design features can significantly affect the power production and costs of a hydropower plant. The Hydropower Assessment Tool does not evaluate cost or energy production at this level of detail. The tool does allow for the user to input site-specific data if it is available. The tool does allow the user to change the selected design flow and design head of a plant, which are set at a default 30 percent exceedance level.

FERC permitting and environmental mitigation costs can vary significantly based on the site. The Hydropower Assessment Tool includes cost functions for FERC licensing and mitigation, in which costs increase with installed capacity. Various types of licensing could occur, such as lease of power privilege from Reclamation or a FERC license application that depend on the specific site features and are not necessarily based on installed capacity. In addition, environmental conditions could be present that require significant mitigation actions. The cost equations for mitigation costs do not consider site specific conditions. The Hydropower Assessment Tool's cost estimates identify and are representative of general costs, but the user must recognize that specific site features could significantly affect licensing and mitigation costs.

Other model limitations include those cases with unusual duration curves, such as an irrigation canal with extended no flow periods, or extremely low flows generally that result in an unreasonable selection of turbine capacity based on the flow duration curve. Similarly, sites with extremely low heads tend to result in very high cost estimates. In either of these cases, or combined, the resulting installed cost per kW can be unreasonable.

The benefit cost ratio and IRR calculations are sensitive not only to the power generation and cost estimating assumptions, but also to the power price assumptions. The price data included in the Hydropower Assessment Tool reflects prices which are forecast to increase greater than the general level of inflation in the next two decades. If current prices had been used, the computed benefit cost ratios and IRRs would have been less. In addition, the Hydropower

Assessment Tool allows the user to input the relevant discount rate (in the BC Ratio and IRR worksheet) to compute the present worth of benefits and costs for the benefit cost ratio. In order to compare the economic performance of the sites on a consistent basis, results in this report reflect use of the Fiscal Year 2010 federal discount rate of 4.375 percent. The appropriate discount rate for a private developer may be higher or lower. Section 5.6 presents a sensitivity analysis on varying discount rates for selected potential hydropower sites.

This page intentionally left blank.

Chapter 5 Site Evaluation Results

After data collection and model development tasks were completed, sites were analyzed using the Hydropower Assessment Tool to determine potential power production and costs and benefits of hydropower development. This analysis evaluates all sites for hydropower potential; however, as described in Chapter 3, some sites may have prohibitive regulatory constraints or existing rights to development. Table 2-3 summarizes sites with known development rights.

As described in previous sections, there are some key indicators to assess if a site has hydropower production potential and if it would be economic to develop. These indicators are valuable in deciding if a site should be further analyzed. To summarize, these indicators include the following:

- Installed Capacity measures power potential at a site based on design flow and net head.
- Annual Production estimates potential energy production of a hydropower plant at a site.
- Plant Factor indicates how often the hydropower plant operates at the installed capacity. Typically a higher plant factor indicates a more feasible site.
- Cost per Installed Capacity indicates development feasibility as related only to costs. Potential hydropower sites that have a \$/installed kW in the range of less than \$3,000-\$6,000/installed kW are typically more feasible than sites with higher \$/installed kW.
- Benefit Cost Ratio compares benefits and costs of potential hydropower development at the site. A benefit cost ratio greater than 1.0 indicates benefits are greater than costs.
- Internal Rate of Return measures the worth of an investment. It is the discount rate that makes the present value of benefits equal to the present value of costs. Investments with higher IRRs are more economically favorable than investments with lower IRRs.

The following sections present power production and economic results of the site evaluations by Reclamation region. It is important to note the data confidence levels associated with the sites when reviewing the results. If the data has a low confidence, it should be considered in interpreting the results. Appendix E includes detailed results of all sites run through the Hydropower Assessment Tool. Appendix F includes detailed tables and figures of potential regulatory constraints relative to each site.

5.1 Great Plains Region

This section first provides an overview of the Resource Assessment results for sites in the Great Plains region, including an inventory of sites analyzed, number of sites within specified benefit cost ratio ranges, and a ranking of the sites with benefit cost ratios greater than 0.75. The overview then discusses some features of the top ranked sites with high or medium confidence, as determined by the hydropower production, economic, and constraints analyses. This discussion provides a general snapshot of the analysis conducted for each site ran through the Hydropower Assessment Tool. Because of the amount of total sites analyzed, individual discussion of each site is not possible within the scope the Resource Assessment. Sections 5.1.2, 5.1.3, and 5.1.4 summarize power production, economic results, and constraints for the remainder of sites.

5.1.1 Overview

Reclamation identified 146 sites at existing facilities in the Great Plains region to analyze hydropower development potential. Table 5-1 summarizes the sites relative hydropower potential. Reclamation's area offices provided much of the local knowledge for sites that do not have hydropower potential. In total, 73 sites could have hydropower potential and 64 sites would not have hydropower potential based on the available data sources and assumptions built into the analysis.

	No. of Sites
Total Sites Identified	146
Sites with No Hydropower Potential	64
Canal or Tunnel Sites (Separate Analysis In Progress)	0
Total Sites with Hydropower Potential	73
Sites Removed from Analysis (see Table 2-3)	9

Table 5-1 Site Inventory in Great Plains Region

The Hydropower Assessment Tool calculates a benefit cost ratio for each site analyzed with hydropower potential. The benefit cost ratio is a good indicator if the site should be further analyzed. Benefits cost ratios were calculated with and without green incentive benefits incorporated. The average difference between benefit cost ratio with and without green incentives for the sites analyzed in the Great Plains region was 0.04. In other words, on average, green incentives increased the benefit cost ratio by about 0.04. Table 5-2 summarizes the number of sites within different ranges of benefit cost ratios, with green incentives. The Great Plains region has 13 sites with benefit cost ratios (with green incentives) greater than 1.0.

	No. of Sites	Total Installed Capacity (MW)	Total Annual Production (MWh)
Benefit Cost Ratio (with Green Incentives) from:			
0 to 0.25	21	3.2	8,036
0.25 to 0.5	19	6.6	24,673
0.5 to 0.75	11	9.1	39,124
0.75 to 1.0	9	10.5	44,756
1.0 to 2.0	10	22.6	107,632
Greater than or equal to 2.0	3	45.4	221,338
Total	73	97.5	445,559

Table 5-2 Benefit Cost Ratio (with Green Incentives) Summary of Sites
Analyzed in Great Plains Region

Table 5-3 identifies and ranks the sites in the Great Plains region with benefit cost ratios (with green incentives) above 0.75. Although the standard for economic viability is a benefit cost ratio of greater than 1.0, sites with benefit cost ratios of 0.75 and higher were ranked given the preliminary nature of the analysis.

The Yellowtail Afterbay Dam ranked the highest in the region with a benefit cost ratio of 3.05 and an IRR of 18.2 percent. Yellowtail Afterbay Dam is part of the Pick-Sloan Missouri Basin Program (PSMBP) in Montana. The model selected a Kaplan turbine for the Yellowtail Afterbay Dam site, which has an installed capacity of about 9 MW and annual energy production of about 68,000 MWh. Figure 5-1 shows the Yellowtail Afterbay Dam site. The Federal green incentive rate was applied to calculate economic benefits; Montana does not have available state performance based incentives for hydropower. This site is near the Crow Indian Reservation. The Crow Tribe has exclusive rights to develop power at this site as part of the "Claims Resolution Act of 2010" (P.L. 111-291) that was signed into law by President Obama on December 8, 2010.

Twin Buttes Dam ranked the second highest in the region with a benefit cost ratio of 2.61 and an IRR of 16.0 percent. Even though Twin Buttes Dam ranks the highest in the Great Plains region, it has low confidence data associated with it that reduces the reliability of the results.

The Pueblo Dam site ranked third in the region with a benefit cost ratio of 2.34 and an IRR of 14.0 percent. Pueblo Dam is part of Reclamation's Fryingpan-Arkansas Project in Colorado. The model selected a Francis turbine for the Pueblo Dam site, with an installed capacity of 13 MW and annual energy production of about 55,600 MWh. The Federal green incentive rate was applied to calculate economic benefits. Figure 5-2 shows the Pueblo Dam site and associated constraints. Local area office staff identified potential fish constraints at the site.

Site ID	Site Name	Data Confidence	Installed Capacity (kW)	Annual Production (MWh)	Plant Factor	Cost per Installed Capacity (\$/kW)	Benefit Cost Ratio With Green	IRR With Green
GP-146	Yellowtail Afterbay Dam	Medium	9,203	68,261	0.86	\$2,157	3.05	18.2%
GP-125	Twin Buttes Dam	Low	23,124	97,457	0.49	\$1,455	2.61	16.0%
GP-99	Pueblo Dam	High	13,027	55,620	0.50	\$1,704	2.34	14.0%
GP-56	Huntley Diversion Dam	Medium	2,426	17,430	0.84	\$3,446	1.86	10.9%
GP-46	Gray Reef Dam	High	2,067	13,059	0.74	\$3,947	1.58	8.7%
GP-23	Clark Canyon Dam	High	3,078	13,689	0.52	\$2,575	1.52	8.6%
GP-52	Helena Valley Pumping Plant	High	2,626	9,608	0.43	\$2,120	1.38	7.8%
GP-41	Gibson Dam	High	8,521	30,774	0.42	\$2,339	1.32	7.1%
GP-126	Twin Lakes Dam (USBR)	High	981	5,648	0.67	\$4,274	1.24	6.5%
GP-95	Pathfinder Dam	High	743	5,508	0.86	\$6,022	1.23	6.2%
GP-43	Granby Dam	High	484	2,854	0.69	\$4,426	1.16	5.9%
GP-136	Willwood Diversion Dam	High	1,062	6,337	0.69	\$5,407	1.10	5.2%
GP-93	Pactola Dam	High	596	2,725	0.53	\$3,706	1.07	5.1%
GP-34	East Portal Diversion Dam	High	283	1,799	0.74	\$5,495	0.96	3.9%
GP-5	Angostura Dam	Low	947	3,218	0.40	\$3,358	0.90	3.3%
GP-39	Fresno Dam	High	1,661	6,268	0.44	\$3,620	0.88	3.2%
GP-129	Virginia Smith Dam	Low	1,607	9,799	0.71	\$7,137	0.88	3.3%
GP-128	Vandalia Diversion Dam	Medium	326	1,907	0.68	\$5,461	0.87	3.0%
GP-92	Olympus Dam	High	284	1,549	0.64	\$5,472	0.82	2.3%
GP-117	St. Mary Canal - Drop 4	High	2,569	8,919	0.40	\$3,736	0.82	2.6%
GP-42	Glen Elder Dam	High	1,008	3,713	0.43	\$4,229	0.81	2.4%
GP-118	St. Mary Canal - Drop 5	High	1,901	7,586	0.46	\$4,817	0.75	1.8%

Table 5-3 Sites with Benefit Cost Ratio (With Green Incentives) Greater than 0.75 in Great Plains Region

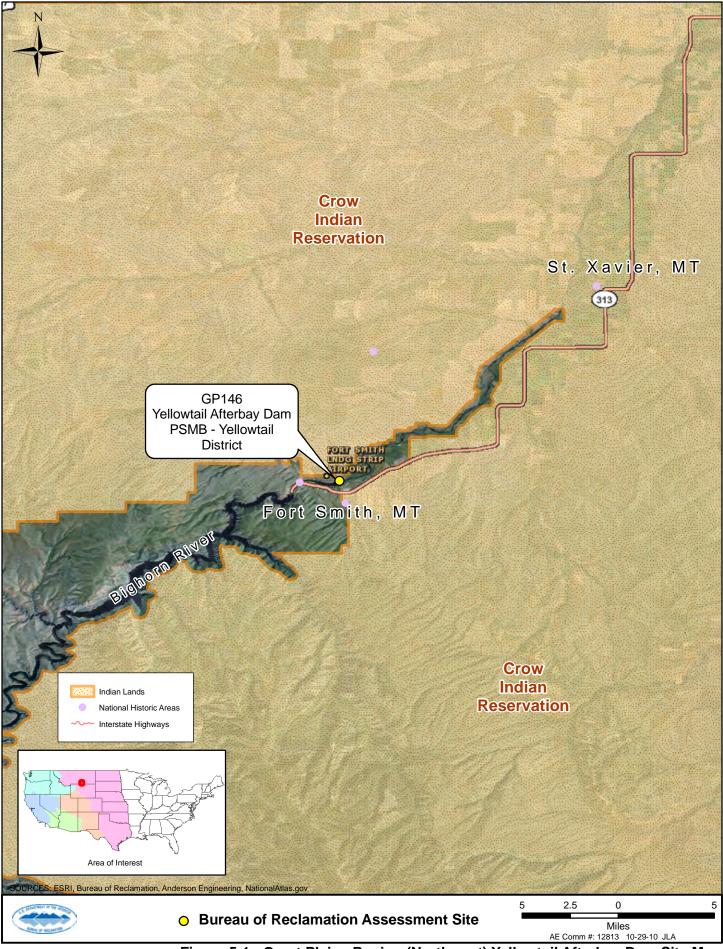


Figure 5-1 : Great Plains Region (Northwest) Yellowtail Afterbay Dam Site Map

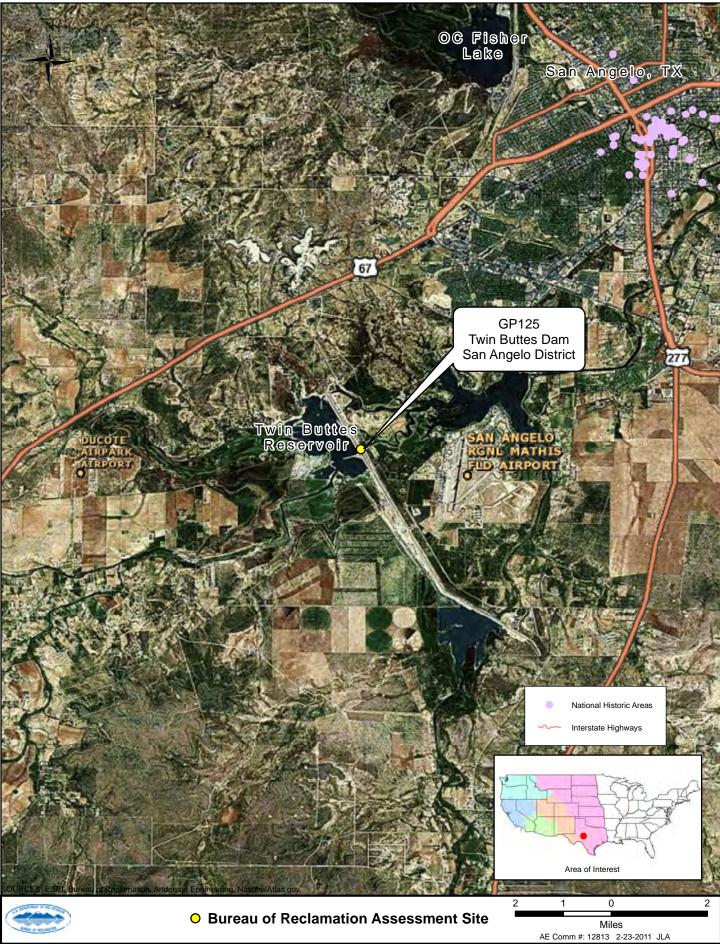


Figure 5-2 : Great Plains Region (South) Twin Buttes Dam Site Map

5.1.2 Power Production

Table 5-4 summarizes potential power production at sites in the Great Plains region. Sites are listed in sequential order by the site identification number. Sites with no hydropower potential are not included in the table. Based on available hydrologic data, the model estimated that the sites could have a total power capacity of about 98 MW and could produce about 446,000 MWh of energy annually. Economic costs and benefits are not considered in these results. Section 5.1.3 presents economic results of the Great Plains region sites. The table also shows the distance from the site to the nearest transmission line (T-line in table). Long distances to the transmission line can add significant costs to hydropower development, and affect the economic viability. There are 6 sites with transmission line distances greater than 10 miles.

For the Pathfinder Dam site (GP-95), Reclamation developed hydropower from Pathfinder Reservoir via a 3-mile tunnel to Fremont Canyon Power Plant. Most of the release from Pathfinder Reservoir goes through Reclamation's existing Fremont Canyon Power Plant, and the only consistent flow available at Pathfinder Dam for future power development would be about 75 cfs.

14610 0		•••	<i></i>				
Site ID	Site Name	Design Head (feet)	Design Flow (cfs)	Installed Capacity (kW)	Annual Production (MWh)	Plant Factor	T- Line Distance (miles)
GP-4	Anchor Dam	60	17	62	126	0.23	15.95
GP-5	Angostura Dam	119	110	947	3,218	0.40	1.01
GP-8	Barretts Diversion Dam	15	106	102	546	0.62	1.44
GP-10	Belle Fourche Dam	50	160	497	1,319	0.31	0.35
GP-12	Bonny Dam	70	8	36	238	0.77	3.58
GP-14	Bretch Diversion Canal	8	51	24	111	0.54	1.34
GP-15	Bull Lake Dam	50	299	933	2,302	0.29	4.68
GP-18	Carter Lake Dam No. 1	142	82	842	2,266	0.31	3.17
GP-22	Choke Canyon Dam	71	38	194	1,199	0.72	1.44
GP-23	Clark Canyon Dam	88	484	3,078	13,689	0.52	0.33
GP-24	Corbett Diversion Dam	12	850	638	2,846	0.52	2.80
GP-28	Deerfield Dam	107	18	138	694	0.59	1.70
GP-29	Dickinson Dam	27	4	7	31	0.51	0.26
GP-31	Dodson Diversion Dam	26	86	140	566	0.47	0.42
GP-34	East Portal Diversion Dam	10	452	283	1,799	0.74	0.01
GP-35	Enders Dam	62	60	267	762	0.33	6.73
GP-37	Fort Shaw Diversion Dam	9	325	183	1,111	0.71	8.21
GP-38	Foss Dam	35	23	49	242	0.58	3.76
GP-39	Fresno Dam	47	560	1,661	6,268	0.44	1.69
GP-41	Gibson Dam	140	845	8,521	30,774	0.42	19.11
GP-42	Glen Elder Dam	69	201	1,008	3,713	0.43	3.35
GP-43	Granby Dam	202	33	484	2,854	0.69	1.23
GP-46	Gray Reef Dam	22	1,504	2,067	13,059	0.74	0.01
	Greenfield Project, Greenfield						
GP-47	Main Canal Drop	38	100	238	830	0.41	1.49
GP-50	Heart Butte Dam	58	70	294	1,178	0.47	0.50
GP-51	Helena Valley Dam	10	197	126	152	0.14	0.56
GP-52	Helena Valley Pumping Plant	140	260	2,626	9,608	0.43	0.56
GP-54	Horsetooth Dam	119	41	350	847	0.28	2.47

Table 5-4 Hydropower Production Summary for Sites in Great Plains Region

Site ID	Site Name	Design Head (feet)	Design Flow (cfs)	Installed Capacity (kW)	Annual Production (MWh)	Plant Factor	T- Line Distance (miles)
GP-56	Huntley Diversion Dam	8	4,850	2,426	17,430	0.84	5.00
GP-58	James Diversion Dam	5	583	193	825	0.50	5.87
GP-59	Jamestown Dam	31	50	113	338	0.35	1.05
	Johnson Project, Greenfield						
GP-60	Main Canal Drop	46	61	203	525	0.30	2.80
GP-63	Kirwin Dam	69	36	179	466	0.30	7.98
GP-67	Lake Alice No. 2 Dam	3	101	18	50	0.32	3.11
GP-68	Lake Sherburne Dam	45	317	898	1,502	0.19	6.91
GP-75	Medicine Creek Dam	66	58	276	1,001	0.42	2.42
GP-76	Merritt Dam	113	200	1,631	8,438	0.60	25.87
GP-85	Nelson Dikes DA	17	46	48	116	0.28	3.01
GP-91	Norton Dam	49	2	6	24	0.47	0.36
GP-92	Olympus Dam	42	107	284	1,549	0.64	0.09
GP-93	Pactola Dam	154	53	596	2,725	0.53	0.26
GP-95	Pathfinder Dam	135	76	743	5,508	0.86	2.33
GP-98	Pishkun Dike - No. 4	22	447	610	1,399	0.00	8.51
GP-99	Pueblo Dam	183	987	13,027	55,620	0.50	0.84
GP-102	Red Willow Dam	68	5	21	148	0.83	1.71
GP-102	Saint Mary Diversion Dam	5	534	177	720	0.00	1.96
GP-107	Shadehill Dam	64	70	322	1,536	0.55	7.32
GP-108	Shadow Mountain Dam	37	45	119	777	0.76	1.96
GP-114	St. Mary Canal - Drop 1	36	537	1,212	4,838	0.46	10.33
GP-115	St. Mary Canal - Drop 2	29	537	974	3,887	0.46	9.83
GP-116	St. Mary Canal - Drop 2	29	537	887	3,538	0.40	9.60
GP-110 GP-117	St. Mary Canal - Drop 3	66	537	2,569	8,919	0.40	8.58
GP-118	St. Mary Canal - Drop 5	57	537	1,901	7,586	0.40	8.58
GP-110 GP-120	Sun River Diversion Dam	45		2,015		0.40	16.61
GP-120 GP-122	Trenton Dam	45 55	716 52	2,015	8,645 570	0.30	3.00
GP-122 GP-125	Twin Buttes Dam	100	3,199	23,124	97,457	0.32	2.57
GP-125 GP-126	Twin Lakes Dam (USBR)	46	3,199	981	5,648	0.49	0.68
GP-120 GP-128	Vandalia Diversion Dam	32	161	326	1,907	0.67	0.88
					,		
GP-129	Virginia Smith Dam	72 72	310	1,607	9,799	0.71	21.69
GP-130	Webster Dam		15	66	164	0.29	6.72
GP-131	Whalen Diversion Dam	11	23 42	15	53	0.40	0.94
GP-132	Willow Creek Dam	90		272	863	0.37	1.89
GP-135	Willwood Canal	37	297	687	3,134	0.53	1.52
GP-136	Willwood Diversion Dam	41	414	1,062	6,337	0.69	1.52
GP-137	Wind River Diversion Dam	19	335	398	1,595	0.47	2.13
GP-138	Woods Project, Greenfield Main Canal Drop	53	225	746	2,680	0.42	3.52
GP-140	Wyoming Canal - Station 1016	13	270	220	939	0.50	1.98
GP-141	Wyoming Canal - Station 1490	40	215	538	2,305	0.50	2.34
GP-142	Wyoming Canal - Station 1520	13	215	175	749	0.50	2.31
GP-143	Wyoming Canal - Station 1626	4	215	52	195	0.43	2.39
GP-144	Wyoming Canal - Station 1972	24	190	285	1,218	0.50	7.31
GP-145	Wyoming Canal - Station 997	17	270	287	1,228	0.50	1.78
GP-146	Yellowtail Afterbay Dam	49	2,979	9,203	68,261	0.86	0.09

Table 5-4 Hydropower Production Summary for Sites in Great Plains Region

5.1.3 Economic Evaluation

Table 5-5 summarizes the economic evaluation of hydropower development at sites in the Great Plains region. The benefit cost ratio and IRR are presented both with and without green incentive benefits. As discussed in Chapter 3, the benefit cost ratio and IRR are calculated using present value of benefits and costs over a 50 year period of analysis with a discount rate of 4.375 percent. All states in the Great Plains region can receive the Federal green incentive for hydropower development; at this time, there are not performance based state incentives available for hydropower. The region has many sites that would not be economical for hydropower production, indicated by high cost per installed capacity, low benefit cost ratios, and low IRRs.

Site ID	Site Name	Total Construction Cost	Annual O&M Cost	Cost per Installed Capacity	Benefit Cost Ratio	IRR	Benefit Cost Ratio	IRR	
		(1,000 \$)	(1,000 \$)	(\$/kW)	With Green		Without Green		
GP-4	Anchor Dam	\$5,656.5	\$130.0	\$90,738	0.02	< 0	0.02	< 0	
GP-5	Angostura Dam	\$3,179.2	\$121.4	\$3,358	0.90	3.3%	0.84	2.8%	
	Barretts Diversion								
GP-8	Dam	\$1,391.4	\$49.9	\$13,596	0.35	< 0	0.33	< 0	
GP-10	Belle Fourche Dam	\$2,376.3	\$90.5	\$4,786	0.49	< 0	0.46	< 0	
GP-12	Bonny Dam	\$1,476.8	\$50.7	\$40,837	0.15	< 0	0.14	< 0	
	Bretch Diversion								
GP-14	Canal	\$712.3	\$35.7	\$29,778	0.12	< 0	0.11	< 0	
GP-15	Bull Lake Dam	\$5,327.8	\$160.6	\$5,709	0.41	< 0	0.39	< 0	
	Carter Lake Dam								
GP-18	No. 1	\$3,642.7	\$126.2	\$4,328	0.56	< 0	0.53	< 0	
GP-22	Choke Canyon Dam	\$1,506.0	\$60.3	\$7,755	0.69	0.7%	0.65	0.3%	
GP-23	Clark Canyon Dam	\$7,923.7	\$261.2	\$2,575	1.52	8.6%	1.42	7.6%	
	Corbett Diversion								
GP-24	Dam	\$4,782.3	\$122.8	\$7,500	0.59	0.1%	0.56	< 0	
GP-28	Deerfield Dam	\$1,392.4	\$55.3	\$10,109	0.43	< 0	0.40	< 0	
GP-29	Dickinson Dam	\$229.3	\$25.2	\$32,329	0.07	< 0	0.06	< 0	
GP-31	Dodson Diversion Dam	\$1,106.9	\$49.7	\$7,895	0.40	< 0	0.37	< 0	
0. 0.	East Portal	\$ 1,10010	ψ.en	<i></i>	0110		0.01		
GP-34	Diversion Dam	\$1,553.3	\$65.9	\$5,495	0.96	3.9%	0.90	3.3%	
GP-35	Enders Dam	\$3,492.3	\$100.7	\$13,082	0.22	< 0	0.20	< 0	
	Fort Shaw Diversion	+c , rc _ rc	* • • • • • •						
GP-37	Dam	\$4,029.4	\$107.6	\$22,014	0.26	< 0	0.25	< 0	
GP-38	Foss Dam	\$1,646.7	\$54.8	\$33,582	0.14	< 0	0.13	< 0	
GP-39	Fresno Dam	\$6,013.9	\$201.1	\$3,620	0.88	3.2%	0.82	2.7%	
GP-41	Gibson Dam	\$19,928.0	\$636.5	\$2,339	1.32	7.1%	1.23	6.2%	
GP-42	Glen Elder Dam	\$4,260.6	\$144.2	\$4,229	0.81	2.4%	0.76	2.0%	
GP-43	Granby Dam	\$2,144.1	\$80.6	\$4,426	1.16	5.9%	1.09	5.2%	
GP-46	Gray Reef Dam	\$8,159.3	\$218.0	\$3,947	1.58	8.7%	1.49	7.8%	
	Greenfield Project,	. ,		. ,					
	Greenfield Main								
GP-47	Canal Drop	\$1,848.6	\$69.1	\$7,779	0.37	< 0	0.34	< 0	
GP-50	Heart Butte Dam	\$1,562.5	\$66.0	\$5,315	0.64	< 0	0.60	< 0	
GP-51	Helena Valley Dam	\$1,069.4	\$48.8	\$8,485	0.10	< 0	0.09	< 0	

Site ID	Site Name	Total Construction Cost	Annual O&M Cost	Cost per Installed Capacity	Benefit Cost Ratio	IRR	Benefit Cost Ratio	IRR	
		(1,000 \$)	(1,000 \$)	(\$/kW)	With Green		Without Green		
	Helena Valley								
GP-52	Pumping Plant	\$5,568.1	\$217.9	\$2,120	1.38	7.8%	1.29	6.8%	
GP-54	Horsetooth Dam	\$2,202.8	\$80.0	\$6,288	0.34	< 0	0.32	< 0	
	Huntley Diversion	A							
GP-56	Dam	\$8,361.0	\$269.1	\$3,446	1.86	10.9%	1.74	9.7%	
	James Diversion	.	.	• · - ·					
GP-58	Dam	\$3,357.8	\$95.7	\$17,377	0.24	< 0	0.23	< 0	
GP-59	Jamestown Dam	\$1,166.5	\$49.2	\$10,338	0.25	< 0	0.23	< 0	
	Johnson Project,								
00.00	Greenfield Main	* •••••	*---	.					
GP-60	Canal Drop	\$2,038.9	\$70.7	\$10,052	0.21	< 0	0.20	< 0	
GP-63	Kirwin Dam	\$3,578.9	\$98.1	\$20,036	0.13	< 0	0.12	< 0	
	Lake Alice No. 2	#4 054 4	¢45 0	¢00.000	0.04		0.00	. •	
GP-67	Dam	\$1,254.1	\$45.3	\$69,333	0.04	< 0	0.03	< 0	
	Lake Sherburne	ФГ 004 4	¢400.0	¢0.005	0.04		0.00	. •	
GP-68	Dam Madiaina Creak	\$5,934.4	\$163.2	\$6,605	0.24	< 0	0.22	< 0	
	Medicine Creek	¢0 400 0	Ф75 O	¢7 604	0.40	. 0	0.44	- 0	
GP-75	Dam Mamilit Dama	\$2,103.6	\$75.2	\$7,631	0.43	< 0	0.41	< 0	
GP-76	Merritt Dam	\$12,641.1	\$321.2	\$7,752	0.68	1.2%	0.64	0.9%	
GP-85	Nelson Dikes DA	\$1,479.3	\$51.8	\$30,895	0.07	< 0	0.06	< 0	
GP-91	Norton Dam	\$232.0	\$25.1	\$39,495	0.05	< 0	0.05	< 0	
GP-92	Olympus Dam	\$1,552.4	\$65.8	\$5,472	0.82	2.3%	0.77	1.9%	
GP-93	Pactola Dam	\$2,207.5	\$87.2	\$3,706	1.07	5.1%	1.01	4.5%	
GP-95	Pathfinder Dam	\$4,476.4	\$114.4	\$6,022	1.23	6.2%	1.16	5.6%	
GP-98	Pishkun Dike - No. 4	\$5,574.0	\$155.2	\$9,141	0.23	< 0	0.22	< 0	
GP-99	Pueblo Dam	\$22,193.9	\$690.6	\$1,704	2.34	14.0%	2.20	12.5%	
GP-102	Red Willow Dam	\$780.7	\$52.1	\$37,427	0.12	< 0	0.12	< 0	
01-102	Saint Mary	φ/00./	ψυ2.1	ψ37,427	0.12	< 0	0.12	< 0	
GP-103	Diversion Dam	\$1,833.7	\$65.2	\$10,340	0.33	< 0	0.30	< 0	
GP-107	Shadehill Dam	\$4,128.1	\$115.8	\$12,806	0.37	< 0	0.35	< 0	
	Shadow Mountain	ψ+,120.1	φ110.0	ψ12,000	0.07	< 0	0.00	< 0	
GP-108	Dam	\$1,471.5	\$55.9	\$12,316	0.46	< 0	0.43	< 0	
01 100	St. Mary Canal -	φ1,171.0		φ12,010	0.10	~ ~ ~	0.10	~ 0	
GP-114	Drop 1	\$7,901.8	\$218.3	\$6,518	0.56	< 0	0.52	< 0	
•••••	St. Mary Canal -	<i></i>	<i>\</i>	<i>¢0,010</i>	0.00		0.02		
GP-115	Drop 2	\$7,141.0	\$196.0	\$7,333	0.50	< 0	0.47	< 0	
	St. Mary Canal -	. .,	* • • • • •	<i></i>					
GP-116	Drop 3	\$6,832.5	\$187.2	\$7,707	0.47	< 0	0.44	< 0	
	St. Mary Canal -	+ - /		+ / -	-		_	-	
GP-117	Drop 4	\$9,599.7	\$289.6	\$3,736	0.82	2.6%	0.77	2.2%	
	St. Mary Canal -								
GP-118	Drop 5	\$9,154.5	\$264.0	\$4,817	0.75	1.8%	0.70	1.4%	
	Sun River Diversion								
GP-120	Dam	\$12,611.4	\$318.5	\$6,259	0.65	0.8%	0.60	0.4%	
GP-122	Trenton Dam	\$2,180.7	\$73.8	\$10,461	0.24	< 0	0.23	< 0	
GP-125	Twin Buttes Dam	\$33,654.2	\$1,206.2	\$1,455	2.61	16.0%	2.46	14.2%	
	Twin Lakes Dam								
GP-126	(USBR)	\$4,192.7	\$136.2	\$4,274	1.24	6.5%	1.17	5.8%	
	Vandalia Diversion								
GP-128	Dam	\$1,779.4	\$72.0	\$5,461	0.87	3.0%	0.82	2.5%	
GP-129	Virginia Smith Dam	\$11,467.6	\$299.2	\$7,137	0.88	3.3%	0.82	2.8%	
GP-130	Webster Dam	\$2,694.5	\$75.4	\$40,704	0.06	< 0	0.06	< 0	

Site ID	Site Name	Total Construction Cost	Annual O&M Cost	Cost per Installed Capacity	Benefit Cost Ratio	IRR	Benefit Cost Ratio	IRR
		(1,000 \$)	(1,000 \$)	(\$/kW)	With	Green	Withou	t Green
	Whalen Diversion							
GP-131	Dam	\$549.3	\$32.0	\$35,641	0.07	< 0	0.06	< 0
GP-132	Willow Creek Dam	\$1,239.9	\$49.4	\$14,980	0.29	< 0	0.27	< 0
GP-135	Willwood Canal	\$4,452.3	\$117.5	\$6,481	0.70	1.4%	0.66	1.0%
	Willwood Diversion							
GP-136	Dam	\$5,741.7	\$150.4	\$5,407	1.10	5.2%	1.03	4.6%
	Wind River							
GP-137	Diversion Dam	\$2,921.2	\$93.5	\$7,344	0.51	< 0	0.48	< 0
	Woods Project,							
	Greenfield Main							
GP-138	Canal Drop	\$4,131.6	\$133.2	\$5,540	0.56	< 0	0.53	< 0
	Wyoming Canal -							
GP-140	Station 1016	\$2,036.0	\$72.0	\$9,275	0.41	< 0	0.39	< 0
	Wyoming Canal -							
GP-141	Station 1490	\$3,249.5	\$108.8	\$6,042	0.64	0.3%	0.61	< 0
	Wyoming Canal -							
GP-142	Station 1520	\$2,002.2	\$68.4	\$11,454	0.34	< 0	0.32	< 0
	Wyoming Canal -							
GP-143	Station 1626	\$1,337.4	\$49.6	\$25,531	0.13	< 0	0.12	< 0
	Wyoming Canal -							
GP-144	Station 1972	\$4,237.5	\$116.7	\$14,860	0.28	< 0	0.26	< 0
	Wyoming Canal -		•	a		_		_
GP-145	Station 997	\$2,224.9	\$78.7	\$7,751	0.49	< 0	0.46	< 0
00.446	Yellowtail Afterbay	* + * • * • •	* ***	0 0 (57		40.000		10 10/
GP-146	Dam	\$19,852.4	\$667.1	\$2,157	3.05	18.2%	2.86	16.1%

Table 5-5 Economic Evaluation Summary for Sites in Great Plains Region

5.1.4 Constraints Evaluation

Figures 5-3 through 5-5 show constraints associated with the sites analyzed in the Hydropower Assessment Tool. Because of the size of the Great Plains region, the figures divide the region into northwest, northeast, and southern areas. Table 5-6 summarizes the number of sites with potential regulatory constraints in the Great Plains region.

In addition to mapping regulatory constraints, Reclamation staff identified potential fish and wildlife and fish passage constraints for sites in the Great Plains region with benefit cost ratios above 0.75. These sites included Lower Yellowstone Diversion Dam, Twin Lakes Dam, Granby Dam and Pueblo Dam. Appropriate mitigation costs were added to sites with regulatory or fish constraints.

Table 5-6 Number of Sites in the Great Plains
Region with Potential Regulatory Constraints

Region with Potential Regulatory Constrain							
Regulatory Constraint	No. of Sites						
Critical Habitat	0						
Indian Lands	13						
National Forest	11						
National Historic Areas	3						
National Park	0						
Wild & Scenic River	1						
Wilderness Preservation Area	9						
Wilderness Study Area	0						
Wildlife Refuge	3						
National Monument	0						

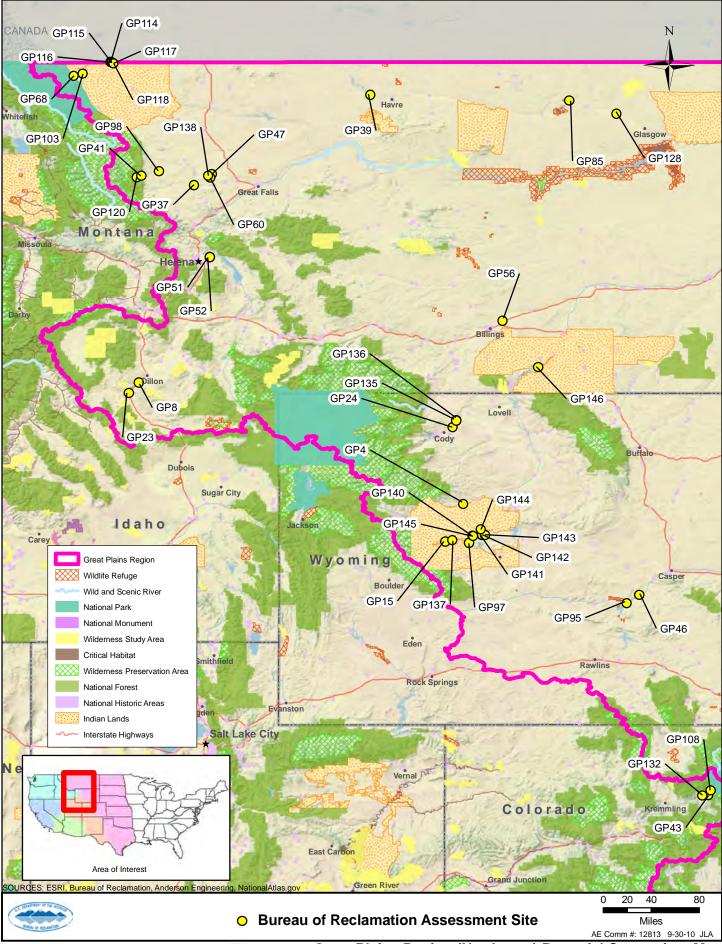


Figure 5-3: Great Plains Region (Northwest) Potential Constraints Map

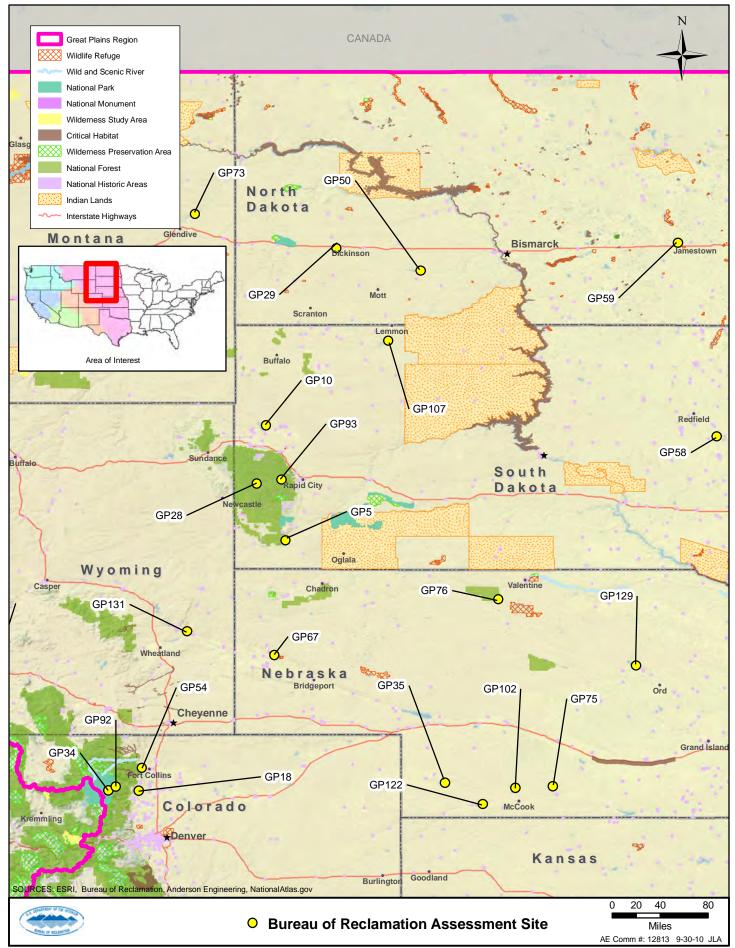


Figure 5-4: Great Plains Region (Northeast) Potential Constraints Map

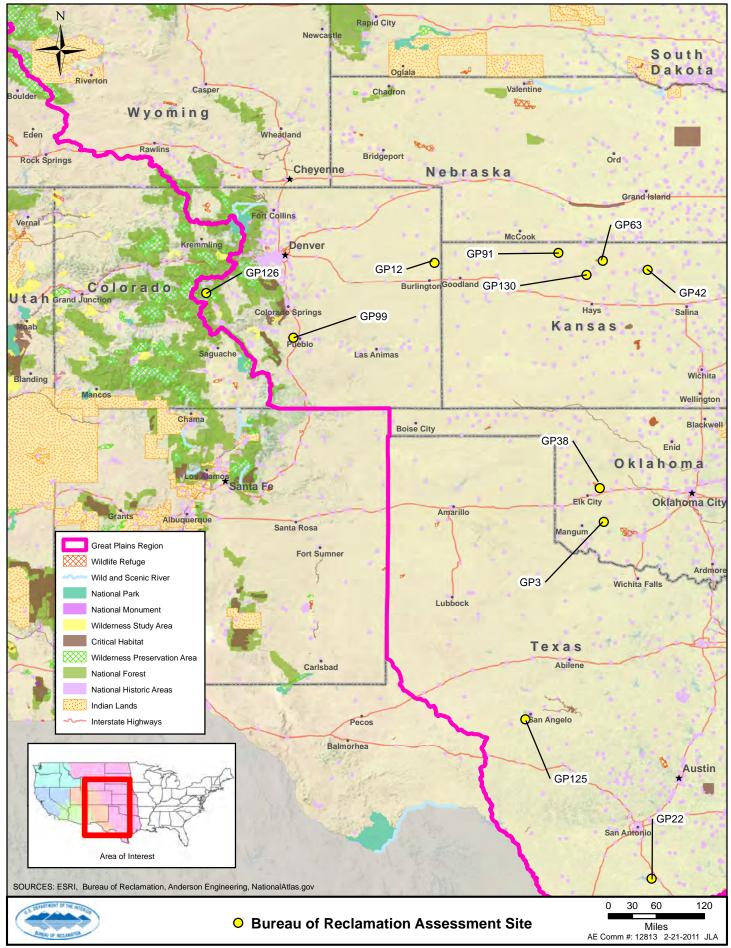


Figure 5-5 : Great Plains Region (South) Potential Constraints Map

5.2 Lower Colorado Region

Only 5 sites in the Lower Colorado region were analyzed with the Hydropower Assessment Tool. This section presents results of all 5 sites and does not include a ranking with benefit cost ratios greater than 0.75 in a separate table.

5.2.1 Overview

Reclamation identified 30 sites at existing facilities in the Lower Colorado region for analysis of hydropower development potential. Table 5-7 summarizes the number of sites relative to hydropower potential. Sites analyzed included Bartlett Dam and Gila Gravity Mesa with medium confidence data and Horseshoe Dam, Imperial Dam, and Laguna Dam with low confidence data.

	No. of Sites
Total Sites Identified	30
Sites with No Hydropower Potential	15
Canal or Tunnel Sites (Separate Analysis In Progress)	8
Total Sites with Hydropower Potential	5
Sites Removed from Analysis (see Table 2-3)	2

Table 5-7 Site Inventory in Lower Colorado Region

Table 5-8 summarizes the number of sites within different ranges of benefit cost ratios. Four of the 5 sites analyzed in the Lower Colorado region had benefit cost ratios greater than 1.0; Bartlett Dam in the Salt River Project in Arizona, Horseshoe and Imperial Dams in the Boulder Canyon Project at the Arizona and California border, and Gila Gravity Main Canal Headworks in the Central Arizona Project. Development rights for hydropower at Bartlett and Horseshoe Dams are under contract with the Salt River Project.

	No. of Sites	Total Installed Capacity (MW)	Total Annual Production (MWh)
Benefit Cost Ratio (with Green Incentives) from:			
0 to 0.25	0	-	-
0.25 to 0.5	0	-	-
0.5 to 0.75	1	0.1	566
0.75 to 1.0	0	-	-
1.0 to 2.0	2	1.3	6,873
Greater than or equal to 2.0	2	21.4	96,734
Total	5	22.8	104,173

Table 5-8 Benefit Cost Ratio Summary of Sites Analyzed in Lower Colorado Region

5.2.2 Power Production

Table 5-9 summarizes potential power production at sites in the Lower Colorado region. Based on available hydrologic data, the model estimated that the sites could have a total power capacity of about 23 MW and could produce about 104,000 MWh of energy annually. Horseshoe and Bartlett Dams could produce the most energy of the five sites. The table also shows the distance from the site to the nearest transmission line. All sites are within a mile to the nearest transmission line, except Horseshoe Dam, which is almost 7 miles away from a transmission line.

Site ID	Site Name	Design Head (feet)	Design Flow (cfs)	Installed Capacity (kW)	Annual Production (MWh)	Plant Factor	T- Line Distance (miles)
LC-6	Bartlett Dam	251	415	7,529	36,880	0.57	0.1
LC-15	Gila Gravity Main Canal Headworks	3	1,410	223	1,548	0.81	0.9
LC-20	Horseshoe Dam	142	1,350	13,857	59,854	0.50	6.8
LC-21	Imperial Dam	12	1,500	1,079	5,325	0.57	0.5
LC-24	Laguna Dam	10	200	125	566	0.53	0.5

Table 5-9 Hydropower Production Summary for Sites in Lower Colorado Region

5.2.3 Economic Evaluation

Table 5-10 summarizes the economic evaluation of hydropower development at sites in the Lower Colorado region. The benefit cost ratio and IRR are presented both with and without green incentive benefits. Bartlett Dam had the highest benefit cost ratio (with green incentives) of 3.50 relative to the other sites. It also had the lowest cost per installed capacity, \$2,008 per kW. All sites analyzed are in Arizona, which assumes a state green incentive of \$0.054 per kWh for 20 years in addition to the Federal incentive of \$0.011 per kWh for 10 years. As a result, there is a larger difference in the benefit cost ratio with green incentives versus without green incentives. On average, the benefit cost ratio with green incentives.

Table 5-10 Economic Evaluation Summa	y for Sites in Lower Colorado Region
--------------------------------------	--------------------------------------

Site ID	Site Name	Total Construction Cost	Annual O&M Cost	Cost per Installed Capacity	Benefit Cost Ratio	IRR	Benefit Cost Ratio	IRR
		(1,000 \$)	(1,000 \$)	(\$/kW)	With Green Incentives		Without Green Incentives	
LC-6	Bartlett Dam	\$15,120.0	\$435.2	\$2,008	3.50	23%	2.25	12%
LC-15	Gila Gravity Main							
	Canal Headworks	\$1,702.6	\$66.0	\$7,632	1.17	6%	0.75	2%
LC-20	Horseshoe Dam	\$30,123.0	\$792.5	\$2,174	2.98	19%	1.93	11%
LC-21	Imperial Dam	\$4,617.5	\$147.3	\$4,280	1.61	10%	1.05	5%
LC-24	Laguna Dam	\$1,100.0	\$48.9	\$8,794	0.63	< 0	0.41	< 0

5.2.4 Constraints Evaluation

Figure 5-6 shows constraints associated with the sites analyzed in the Hydropower Assessment Tool. Table 5-11 summarizes the number of sites with potential regulatory constraints in the Lower Colorado region.

In addition to mapping regulatory constraints, Reclamation staff identified potential fish and wildlife and fish passage constraints for sites in the Lower Colorado region with benefit cost ratios above 0.75. These sites included Bartlett and Horseshoe Dams. Appropriate mitigation costs were added to sites with regulatory or fish constraints.

Constraints	
Regulatory Constraint	No. of Sites
Critical Habitat	3
Indian Lands	2
National Forest	2
National Historic Areas	0
National Park	0
Wild & Scenic River	0
Wilderness Preservation Area	0
Wilderness Study Area	0
Wildlife Refuge	0
National Monument	0

Table 5-11 Number of Sites in the Lower Colorado Region with Potential Regulatory Constraints

Figure 5-7 shows the Bartlett Dam site. Bartlett Dam is in the Tonto National Forest, which could require coordination with the USFS for potential development of the site. The hydropower analysis assumes recreation and fish and wildlife mitigation costs in the total development costs estimates for the site. Bartlett Dam has a FERC Preliminary Permit issued on the site; the docket number is 13819.

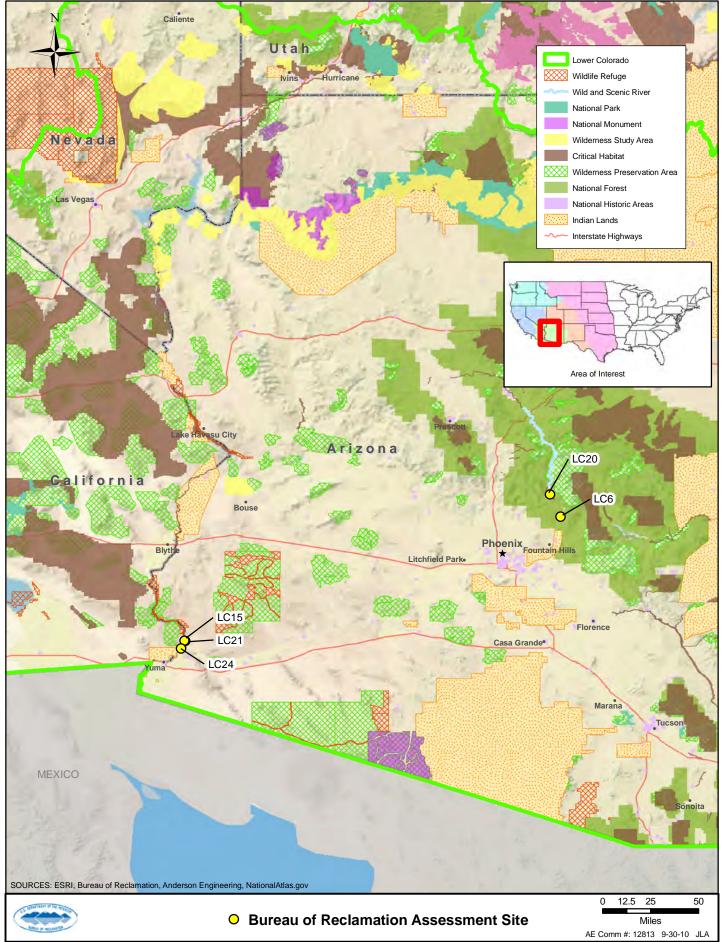


Figure 5-6: Lower Colorado Region Potential Constraints Map

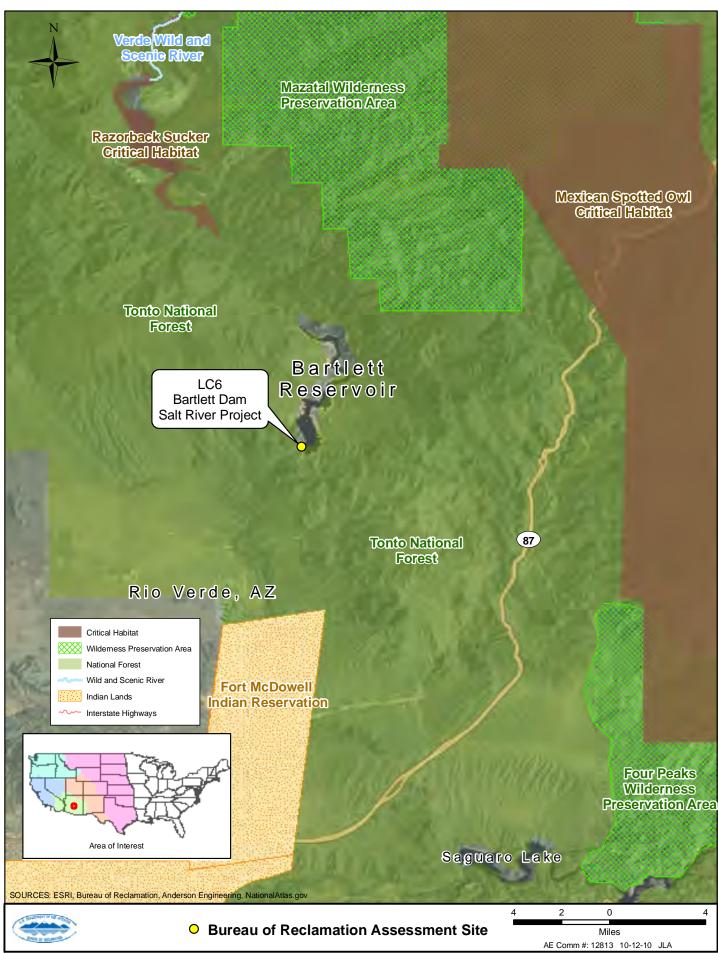


Figure 5-7: Lower Colorado Region Bartlett Dam Site Map

5.3 Mid-Pacific Region

This section is organized similar to the Great Plains region in Section 5.1.

5.3.1 Overview

Reclamation identified 44 sites at existing facilities in the Mid-Pacific region for analysis of hydropower development potential. Table 5-12 summarizes the number of sites relative to hydropower potential.

Table 5-12 Site Inventory in Mid-Pacific Region

	No. of Sites
Total Sites Identified	44
Sites with No Hydropower Potential	26
Canal or Tunnel Sites (Separate Analysis In Progress)	0
Total Sites with Hydropower Potential	14
Sites Removed from Analysis (see Table 2-3)	4

Table 5-13 summarizes the number of sites with hydropower potential within different ranges of benefit cost ratios. The Mid-Pacific region has 4 sites with benefit cost ratios greater than 1.0.

	No. of Sites	Total Installed Capacity (MW)	Total Annual Production (MWh)
Benefit Cost Ratio (with Green Incentives) from:			
0 to 0.25	5	0.5	1,919
0.25 to 0.5	2	0.3	1,518
0.5 to 0.75	1	0.3	893
0.75 to 1.0	2	1.6	7,487
1.0 to 2.0	4	3.5	13,393
Greater than or equal to 2.0	0	-	-
Total	14	6.2	25,210

 Table 5-13 Benefit Cost Ratio Summary of Sites Analyzed in Mid-Pacific

 Region

Table 5-14 identifies and ranks the sites in the Mid-Pacific region with benefit cost ratios (with green incentives) above 0.75. The Prosser Creek Dam site ranked the highest in the region with a benefit cost ratio of 1.98 and an IRR of 14.2 percent. Prosser Creek Dam is part of Reclamation's Washoe Project and is in California. The state green incentive rate was applied to calculate economic benefits, which is \$0.0984 per kWh for the 20 years. The model selected a Francis turbine for the Prosser Creek Dam site, with an installed capacity of 872 kW and annual energy production of about 3,800 MWh. Figure

5-8 shows the Prosser Creek Dam site, which is in the Tahoe National Forest. Recreation mitigation costs are added to the total development costs for the site.

The Boca Dam site is ranked the second highest in the region with a benefit cost ratio of 1.68 and an IRR of 11.3 percent, with green incentives. Similar to Prosser Creek Dam, Boca Dam is part of the Washoe Project and is in California. The state incentive was also used to calculate green incentive benefits. The model selected a Francis turbine for the Boca Dam site, which has an installed capacity of about 1 MW and annual energy production of about 4,400 MWh. Figure 5-8 also shows the Boca Dam site and associated constraints. Boca Dam is in the Tahoe National Forest and is included on the National Register of Historic Places. Recreation and archaeological and historical mitigation cost are added to the total development costs for the site.

 Table 5-14 Sites with Benefit Cost Ratio (With Green Incentives) Greater than 0.75 in Mid-Pacific Region

Site ID	Site Name	Data Confidence	Installed Capacity (kW)	Annual Production (MWh)	Plant Factor	Cost per Installed Capacity (\$/kW)	Benefit Cost Ratio With Green	IRR With Green
MP-30	Prosser Creek Dam	High	872	3,819	0.51	\$ 3,576	1.98	14.2%
MP-2	Boca Dam	High	1,184	4,370	0.43	\$ 3,711	1.68	11.3%
MP-8	Casitas Dam	High	1,042	3,280	0.37	\$ 3,165	1.57	10.7%
MP-32	Putah Diversion Dam	Medium	363	1,924	0.62	\$ 7,745	1.16	6.3%
MP-17	John Franchi Dam	Low	469	1,863	0.46	\$ 7,728	0.90	3.0%
MP-24	Marble Bluff Dam	High	1,153	5,624	0.57	\$ 5,943	0.83	2.8%

Figure 5-8 : Mid-Pacific Region (North) Prosser Creek/Boca Dam Site Map

5.3.2 Power Production

Table 5-15 summarizes potential power production at sites in the Mid-Pacific region. The Mid-Pacific region sites combined have a total capacity of about 6.2 MW and could produce up to about 25,000 MWh of energy annually. Three sites have the installed capacity of about 1 MW each. The table also shows the distance from the site to the nearest transmission line. The Gerber Dam and Rainbow Dam sites are over 10 miles to the nearest transmission lines.

	2 -	,			0		
Site ID	Site Name	Design Head (feet)	Design Flow (cfs)	Installed Capacity (kW)	Annual Production (MWh)	Plant Factor	T- Line Distance (miles)
MP-1	Anderson-Rose Dam	12	40	29	126	0.5	0.24
MP-2	Boca Dam	92	179	1,184	4,370	0.43	1.14
MP-3	Bradbury Dam	190	10	142	521	0.43	7.18
MP-8	Casitas Dam	96	151	1,042	3,280	0.37	0.27
MP-15	Gerber Dam	35	112	248	760	0.36	11.3
MP-17	John Franchi Dam	15	500	469	1,863	0.46	3.03
MP-18	Lake Tahoe Dam	6	729	287	893	0.36	0.05
MP-23	Malone Diversion Dam	8	95	44	147	0.39	4.6
MP-24	Marble Bluff Dam	38	479	1,153	5,624	0.57	7.22
MP-30	Prosser Creek Dam	127	95	872	3,819	0.51	0.5
MP-31	Putah Creek Dam	11	43	28	166	0.7	1.94
MP-32	Putah Diversion Dam	11	553	363	1,924	0.62	2.23
MP-33	Rainbow Dam	29	105	190	998	0.63	13.88
MP-44	Upper Slaven Dam	8	316	158	720	0.53	7.25

Table 5-15 Hydropower Production Summary for Sites in Mid-Pacific Region

5.3.3 Economic Evaluation

Table 5-16 summarizes the economic evaluation of hydropower development at sites in the Mid-Pacific region. Sites in California could receive the state green incentive. Oregon and Nevada could receive the Federal green incentive for hydropower development; at this time, there are not performance based state incentives available for hydropower. On average, for the sites analyzed, the green incentives resulted in an increase of the benefit cost ratio of about 0.3 than if green incentives were not included. Sites in California gained the most benefits from green incentives from the state program. Some sites in the Mid-Pacific region had very high cost per installed capacity, low benefit cost ratios, and low to negative IRRs, indicating they would not be economical to develop.

Site ID	Site Name	Total Construction Cost (4 000 0		Cost per Installed Capacity	Benefit Cost Ratio	IRR	Benefit Cost Ratio	IRR
		(1,000 \$)	(1,000 \$)	(\$/kW)		Green Itives	Without Green Incentives	
MP-1	Anderson-Rose Dam	\$377.7	\$29.8	\$12,916	0.21	< 0	0.2	< 0
MP-2	Boca Dam	\$4,393.0	\$144.4	\$3,711	1.68	11.3%	0.89	3.4%
MP-3	Bradbury Dam	\$3,093.8	\$87.0	\$21,749	0.3	< 0	0.16	< 0
MP-8	Casitas Dam	\$3,298.9	\$127.3	\$3,165	1.57	10.7%	0.84	2.8%
MP-15	Gerber Dam	\$5,358.0	\$135.7	\$21,621	0.14	< 0	0.13	< 0
MP-17	John Franchi Dam	\$3,624.5	\$109.8	\$7,728	0.9	3.0%	0.48	< 0
MP-18	Lake Tahoe Dam	\$2,494.8	\$68.0	\$8,686	0.65	< 0	0.34	< 0
MP-23	Malone Diversion Dam	\$1,835.6	\$57.9	\$41,464	0.07	< 0	0.07	< 0
MP-24	Marble Bluff Dam	\$6,854.2	\$193.9	\$5,943	0.83	2.8%	0.78	2.4%
MP-30	Prosser Creek Dam	\$3,119.0	\$113.5	\$3,576	1.98	14.2%	1.06	4.9%
MP-31	Putah Creek Dam	\$1,047.7	\$42.5	\$38,062	0.25	< 0	0.13	< 0
MP-32	Putah Diversion Dam	\$2,815.3	\$90.6	\$7,745	1.16	6.3%	0.62	0.2%
MP-33	Rainbow Dam	\$5,915.9	\$142.1	\$31,116	0.32	< 0	0.17	< 0
MP-44	Upper Slaven Dam	\$3,474.0	\$95.6	\$21,974	0.21	< 0	0.2	< 0

 Table 5-16 Economic Evaluation Summary for Sites in Mid-Pacific Region

5.3.4 Constraints Evaluation

Figures 5-9 and 5-10 show constraints associated with the sites analyzed in the Hydropower Assessment Tool. The region is separated into north and south. Table 5-17 summarizes the number of sites with potential regulatory constraints in the Mid-Pacific region.

In addition to mapping regulatory constraints, Reclamation staff identified potential fish and wildlife and fish passage constraints for sites in the Mid-Pacific region with benefit cost ratios above 0.75. These sites included Lake Tahoe Dam and Putah Diversion Dam. Appropriate mitigation costs were added to sites with regulatory or fish constraints.

Regulatory ConstraintNoCritical HabitatIndian LandsIndian LandsIndian LandsNational ForestIndian LandsNational Historic AreasIndian LandsNational ParkIndian Lands	Region with Potential Regulatory Constraints							
Indian Lands National Forest National Historic Areas	o. of Sites							
National Forest National Historic Areas	2							
National Historic Areas	1							
	6							
National Park	3							
	0							
Wild & Scenic River	0							
Wilderness Preservation Area	0							
Wilderness Study Area	0							
Wildlife Refuge	1							
National Monument	0							

Table 5-17 Number of Sites in the Mid-Pacific Region with Potential Regulatory Constraints

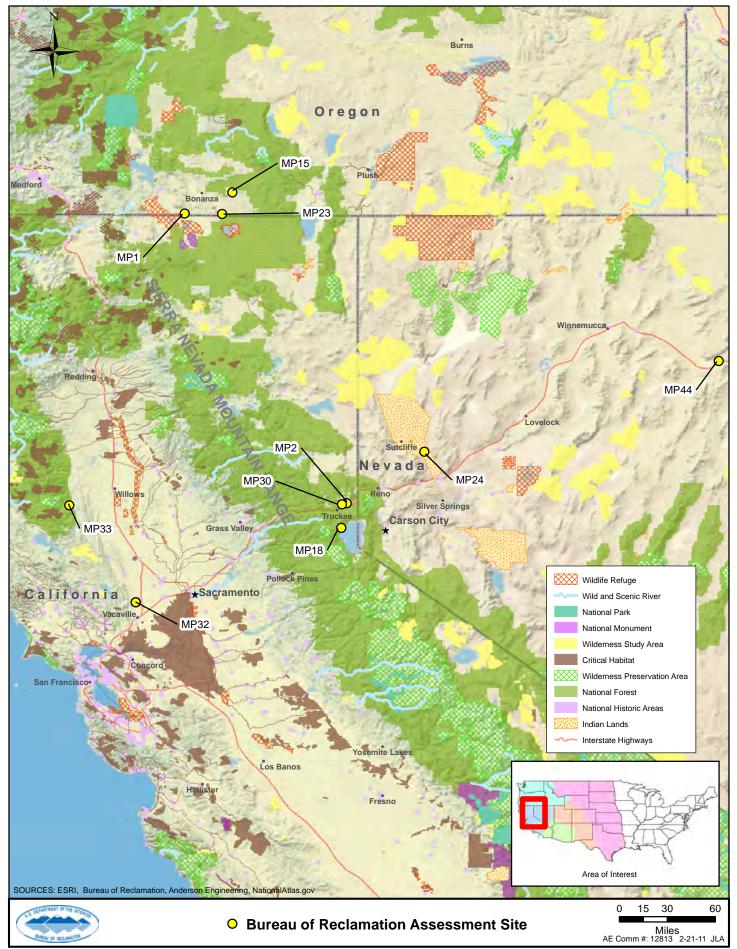


Figure 5-9 : Mid-Pacific Region (North) Potential Constraints Map

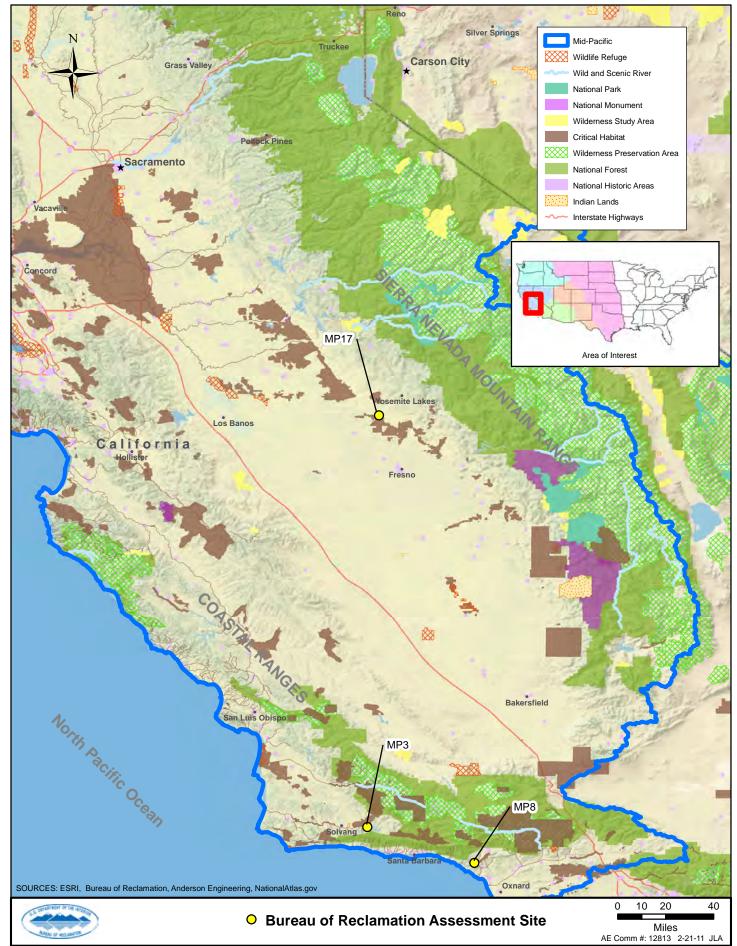


Figure 5-10 : Mid-Pacific Region (South) Potential Constraints Map

5.4 Pacific Northwest Region

This section is organized similar to the Great Plains region in Section 5.1.

5.4.1 Overview

Reclamation identified 105 sites at existing facilities in the Pacific Northwest region for analysis of hydropower development potential. Table 5-18 summarizes the number of sites analyzed in the Pacific Northwest region relative to hydropower potential.

	No. of Sites
Total Sites Identified	105
Sites with No Hydropower Potential	40
Canal or Tunnel Sites (Separate Analysis In Progress)	9
Total Sites with Hydropower Potential	34
Sites Removed from Analysis (see Table 2-3)	22

Table 5-18 Site Inventory in Pacific Northwest Region

Table 5-19 summarizes the number of sites within different ranges of benefit cost ratios. The Pacific Northwest region has 4 sites with benefit cost ratios greater than 1.0.

	No. of Sites	Total Installed Capacity (MW)	Total Annual Production (MWh)
Benefit Cost Ratio (with Green Incentives) from:			
0 to 0.25	11	2.7	11,363
0.25 to 0.5	5	3.5	12,201
0.5 to 0.75	5	4.3	15,252
0.75 to 1.0	9	19.7	59,347
1.0 to 2.0	4	7.9	47,102
Greater than or equal to 2.0	0	-	-
Total	34	38.1	145,265

 Table 5-19 Benefit Cost Ratio Summary of Sites Analyzed in Pacific

 Northwest Region

Table 5-20 identifies and ranks the sites in the Pacific Northwest region with benefit cost ratios (with green incentives) above 0.75. The Arthur R. Bowman Dam site ranked the highest in the region with a benefit cost ratio of 1.90 and an IRR of 11.2 percent. Arthur R. Bowman Dam is part of Reclamation's Crooked River Project and is in Oregon. The Federal green incentive rate was applied to calculate economic benefits. The model selected a Francis turbine for the Arthur R. Bowman Dam site, with an installed capacity of about 3 MW and

annual energy production of about 18,000 MWh. Figure 5-11 shows the Arthur R. Bowman Dam site, which near a portion of the Crooked River classified as a Wild and Scenic River. Recreation mitigation costs are added to the total development costs for the site.

The Easton Diversion Dam site is ranked the second highest in the region with a benefit cost ratio of 1.68 and an IRR of 9.9 percent, with green incentives. Easton Diversion Dam is part of the Yakima Project in Washington. The state incentive, stacked with the Federal green incentive rate, was used to calculate green incentive benefits. The model selected a Kaplan turbine for the Easton Diversion Dam site, which has an installed capacity of about 1 MW and annual energy production of 7,400 MWh. Figure 5-12 shows the Easton Diversion Dam site. There are no constraints directly associated with the site, but it is close to the Wenatchee National Forest and critical habitat designated for the Northern Spotted Owl.

 Table 5-20 Sites with Benefit Cost Ratio (With Green Incentives) Greater than 0.75 in Pacific

 Northwest Region

Site ID	Site Name	Data Confidence	Installed Capacity (kW)	Annual Production (MWh)	Plant Factor	Cost per Installed Capacity (\$/kW)	Benefit Cost Ratio With Green	IRR With Green
PN-6	Arthur R. Bowman Dam	High	3,293	18,282	0.65	\$2,732	1.90	11.2%
PN-31	Easton Diversion Dam	High	1,057	7,400	0.82	\$3,792	1.68	9.9%
PN-95	Sunnyside Dam	Medium	1,362	10,182	0.87	\$5,075	1.43	7.8%
PN-88	Scootney Wasteway	Low	2,276	11,238	0.57	\$3,521	1.26	6.6%
PN-34	Emigrant Dam	High	733	2,619	0.42	\$3,013	0.99	4.3%
PN-104	Wickiup Dam	High	3,950	15,650	0.46	\$3,843	0.98	4.2%
PN-12	Cle Elum Dam	High	7,249	14,911	0.24	\$1,889	0.94	3.8%
PN-80	Ririe Dam	High	993	3,778	0.44	\$3,661	0.94	3.8%
PN-87	Scoggins Dam	High	955	3,683	0.45	\$3,838	0.92	3.6%
PN-59	McKay Dam	High	1,362	4,344	0.37	\$3,138	0.88	3.2%
PN-49	Keechelus Dam	High	2,394	6,746	0.33	\$2,830	0.87	3.0%
PN-44	Haystack	High	805	3,738	0.54	\$4,866	0.85	2.9%
PN-48	Kachess Dam	Medium	1,227	3,877	0.37	\$3,535	0.77	1.9%

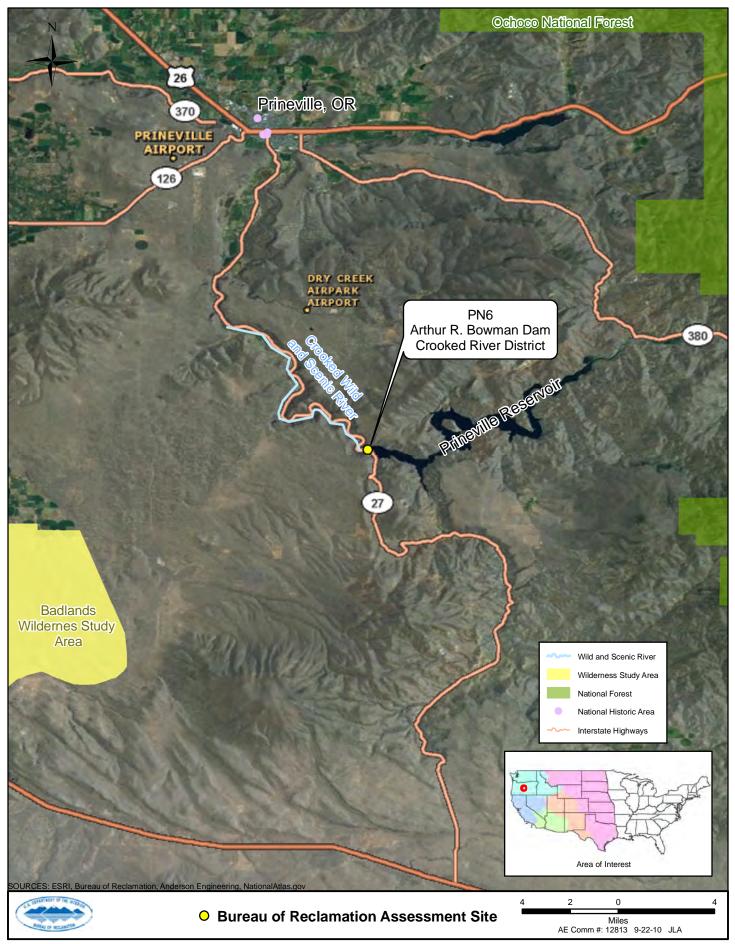


Figure 5-11: Pacific Northwest Region (West) Arthur R. Bowman Dam Site Map



Figure 5-12 : Pacific Northwest Region (West) Easton Diversion Dam Site Map

5.4.2 Power Production

Table 5-21 summarizes potential power production at sites in the Pacific Northwest region. The Pacific Northwest region sites combined have a total capacity of about 38 MW and could produce up to about 145,000 MWh of energy annually. Cle Elum Dam has the highest installed capacity of the sites analyzed, about 7 MW. The table also shows the distance from the site to the nearest transmission line. Nine sites in the region are over 10 miles to the nearest transmission lines.

Site ID	Site Name	Design Head (feet)	Design Flow (cfs)	Installed Capacity (kW)	Annual Production (MWh)	Plant Factor	T- Line Distance (miles)
PN-1	Agate Dam	63	23	89	264	0.35	0.75
PN-2	Agency Valley	67	244	1,179	3,941	0.39	22.46
PN-6	Arthur R. Bowman Dam	173	264	3,293	18,282	0.65	5.94
PN-9	Bully Creek	85	51	313	1,065	0.4	19.01
PN-10	Bumping Lake	30	279	521	2,200	0.49	22.78
PN-12	Cle Elum Dam	101	994	7,249	14,911	0.24	2.02
PN-15	Cold Springs Dam	38	28	66	131	0.23	2.51
PN-20	Crane Prairie	18	270	306	1,845	0.7	17.41
PN-24	Deadwood Dam	110	110	871	3,563	0.48	45.01
PN-31	Easton Diversion Dam	46	366	1,057	7,400	0.82	0.32
PN-34	Emigrant Dam	185	55	733	2,619	0.42	0.22
PN-37	Fish Lake	39	36	102	235	0.27	1.5
PN-41	Golden Gate Canal	43	191	514	2,293	0.52	5
PN-43	Harper Dam	80	75	434	1,874	0.5	13.5
PN-44	Haystack	57	225	805	3,738	0.54	2.49
PN-48	Kachess Dam	55	358	1,227	3,877	0.37	0.13
PN-49	Keechelus Dam	75	444	2,394	6,746	0.33	1.07
PN-52	Little Wood River Dam	103	200	1,493	4,951	0.39	37.37
PN-53	Lytle Creek	3	264	50	329	0.77	3.22
PN-56	Mann Creek	113	61	495	2,097	0.5	4.59
PN-57	Mason Dam	139	164	1,649	5,773	0.41	10.82
PN-58	Maxwell Dam	4	467	117	644	0.64	3.99
PN-59	McKay Dam	122	154	1,362	4,344	0.37	2.22
PN-65	Ochoco Dam	60	19	69	232	0.39	2.22
PN-78	Reservoir "A"	60	12	45	169	0.44	2.29
PN-80	Ririe Dam	132	104	993	3,778	0.44	2.27
PN-87	Scoggins Dam	96	138	955	3,683	0.45	2.66
PN-88	Scootney Wasteway	13	2,800	2,276	11,238	0.57	3.65
PN-95	Sunnyside Dam	6	3,630	1,362	10,182	0.87	5.98
PN-97	Thief Valley Dam	39	150	369	1,833	0.58	2.29
PN-100	Unity Dam	46	106	307	1,329	0.5	25.28
PN-101	Warm Springs Dam	57	346	1,234	3,256	0.31	0.67
PN-104	Wickiup Dam	55	1,157	3,950	15,650	0.46	12.43
PN-105	Wild Horse - BIA	70	53	267	791	0.35	4.22

Table 5-21 Hydropower Production Summary for Sites in Pacific Northwest Region

5.4.3 Economic Evaluation

Table 5-22 summarizes the economic evaluation of hydropower development at sites in the Pacific Northwest region. Except for Washington, the other states in the Pacific Northwest region (sites are primarily in Oregon and Idaho) can receive the Federal green incentive for hydropower development. On average, for the sites analyzed, the green incentives only resulted in an increase in the benefit cost ratio of about 0.04. Some sites in the Pacific Northwest region had very high cost per installed capacity, low benefit cost ratios, and low IRRs, indicating they would not be economical to develop.

Site ID	Site Name	Total Construction Cost	Annual O&M Cost	Cost per Installed Capacity	Benefit Cost Ratio	IRR	Benefit Cost Ratio	IRR
		(1,000 \$)	(1,000 \$)	(\$/kW)	With Green Incentives		Without Green Incentives	
PN-1	Agate Dam	\$821.5	\$41.8	\$9,267	0.24	< 0	0.22	< 0
PN-2	Agency Valley	\$11,353.3	\$283.6	\$9,626	0.33	< 0	0.31	< 0
	Arthur R. Bowman							
PN-6	Dam	\$8,994.9	\$285.6	\$2,732	1.9	11.2%	1.79	10.0%
PN-9	Bully Creek	\$8,062.9	\$189.1	\$25,773	0.13	< 0	0.12	< 0
PN-10	Bumping Lake	\$11,275.7	\$253.9	\$21,650	0.2	< 0	0.19	< 0
PN-12	Cle Elum Dam	\$13,692.3	\$491.1	\$1,889	0.94	3.8%	0.89	3.3%
PN-15	Cold Springs Dam	\$1,308.8	\$48.9	\$19,942	0.09	< 0	0.08	< 0
PN-20	Crane Prairie	\$7,751.3	\$183.6	\$25,317	0.25	< 0	0.23	< 0
PN-24	Deadwood Dam	\$19,510.1	\$428.5	\$22,402	0.2	< 0	0.19	< 0
	Easton Diversion							
PN-31	Dam	\$4,006.9	\$143.0	\$3,792	1.68	9.9%	1.58	8.8%
PN-34	Emigrant Dam	\$2,209.7	\$95.0	\$3,013	0.99	4.3%	0.93	3.7%
PN-37	Fish Lake	\$1,176.0	\$48.3	\$11,555	0.18	< 0	0.17	< 0
PN-41	Golden Gate Canal	\$3,991.6	\$121.5	\$7,771	0.56	< 0	0.53	< 0
PN-43	Harper Dam	\$5,901.2	\$152.4	\$13,606	0.31	< 0	0.29	< 0
PN-44	Haystack	\$3,916.4	\$131.4	\$4,866	0.85	2.9%	0.8	2.4%
PN-48	Kachess Dam	\$4,335.9	\$154.6	\$3,535	0.77	1.9%	0.72	1.5%
PN-49	Keechelus Dam	\$6,774.2	\$224.0	\$2,830	0.87	3.0%	0.81	2.5%
	Little Wood River							
PN-52	Dam	\$17,931.2	\$419.3	\$12,013	0.29	< 0	0.27	< 0
PN-53	Lytle Creek	\$1,603.2	\$54.4	\$32,368	0.19	< 0	0.18	< 0
PN-56	Mann Creek	\$3,554.4	\$112.0	\$7,174	0.56	< 0	0.52	< 0
PN-57	Mason Dam	\$7,276.4	\$220.2	\$4,414	0.72	1.5%	0.68	1.1%
PN-58	Maxwell Dam	\$2,075.4	\$66.9	\$17,766	0.3	< 0	0.28	< 0
PN-59	McKay Dam	\$4,274.0	\$155.7	\$3,138	0.88	3.2%	0.83	2.7%
PN-65	Ochoco Dam	\$1,286.3	\$49.5	\$18,532	0.16	< 0	0.15	< 0
PN-78	Reservoir "A"	\$1,262.2	\$47.4	\$27,968	0.12	< 0	0.11	< 0
PN-80	Ririe Dam	\$3,636.9	\$131.5	\$3,661	0.94	3.8%	0.89	3.3%
PN-87	Scoggins Dam	\$3,665.4	\$130.6	\$3,838	0.92	3.6%	0.86	3.1%
PN-88	Scootney Wasteway	\$8,014.4	\$258.3	\$3,521	1.26	6.6%	1.18	5.9%
PN-95	Sunnyside Dam	\$6,912.0	\$205.4	\$5,075	1.43	7.8%	1.35	7.0%
PN-97	Thief Valley Dam	\$2,601.0	\$87.2	\$7,050	0.64	0.1%	0.6	< 0
PN-100	Unity Dam	\$9,462.0	\$213.5	\$30,808	0.14	< 0	0.13	< 0

Table 5-22 Economic Evaluation Summary for Sites in Pacific Northwest Region

Site ID	Site Name	Construction O&M	Annual O&M Cost	Cost per Installed Capacity	Benefit Cost Ratio	IRR	Benefit Cost Ratio	IRR
		(1,000 \$)	(1,000 \$)	(\$/kW)		Green ntives		it Green ntives
PN-101	Warm Springs Dam	\$4,326.6	\$154.2	\$3,507	0.66	0.40%	0.62	0.1%
PN-104	Wickiup Dam	\$15,178.6	\$422.3	\$3,843	0.98	4.2%	0.92	3.7%
PN-105	Wild Horse - BIA	\$2,873.0	\$89.7	\$10,764	0.27	< 0	0.26	< 0

Table 5-22 Economic Evaluation Summary for Sites in Pacific Northwest Region

5.4.4 Constraints Evaluation

Figures 5-13 and 5-14 show constraints associated with the sites analyzed in the Hydropower Assessment Tool. Because of the size of the region, the figures split the region into east and west. Table 5-23 summarizes the number of sites with potential regulatory constraints in the Pacific Northwest region. Reclamation staff did not identify additional fish and wildlife and fish passage constraints for sites in the Pacific Northwest region with benefit cost ratios above 0.75.

Constraints	
Regulatory Constraint	No. of Sites
Critical Habitat	5
Indian Lands	3
National Forest	13
National Historic Areas	3
National Park	0
Wild & Scenic River	3
Wilderness Preservation Area	1
Wilderness Study Area	1
Wildlife Refuge	6
National Monument	0

Table 5-23 Number of Sites in the PacificNorthwest Region with Potential RegulatoryConstraints

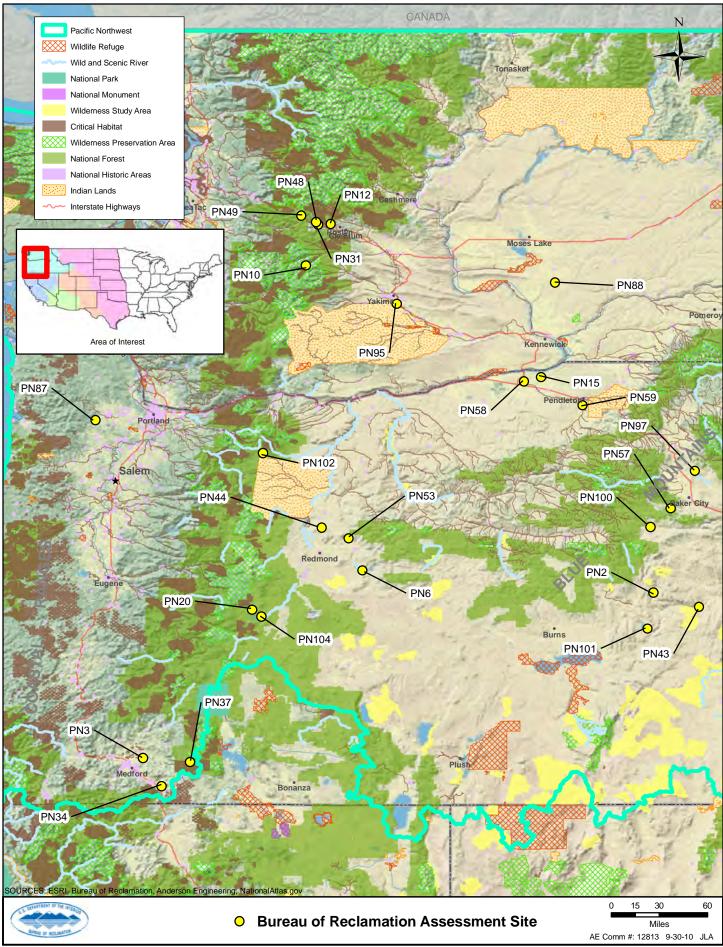


Figure 5-13: Pacific Northwest Region (West) Potential Constraints Map

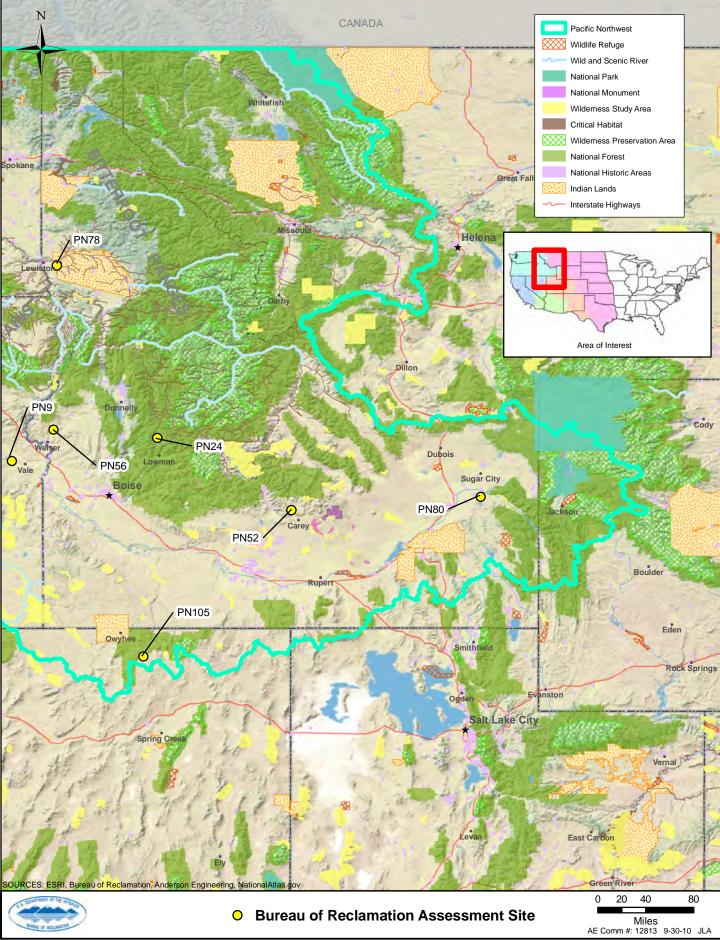


Figure 5-14: Pacific Northwest Region (East) Potential Constraints Map

5.5 Upper Colorado Region

This section is organized similar to the Great Plains region in Section 5.1.

5.5.1 Overview

Reclamation identified 205 sites at existing facilities in the Upper Colorado region for hydropower development potential. Table 5-24 summarizes the number of sites relative to hydropower potential.

Table 5-24 Site Inventory in Upper Colorado Region

	No. of Sites
Total Sites Identified	205
Sites with No Hydropower Potential	73
Canal or Tunnel Sites (Separate Analysis In Progress)	35
Total Sites with Hydropower Potential	65
Sites Removed from Analysis (see Table 2-3)	32

Table 5-25 summarizes the number of sites within different ranges of benefit cost ratios. The Upper Colorado region has 18 sites with benefit cost ratios greater than 1.0.

	No. of Sites	Total Installed Capacity (MW)	Total Annual Production (MWh)
Benefit Cost Ratio (with Green Incentives) from:			
0 to 0.25	25	4.0	13,723
0.25 to 0.5	9	5.3	19,563
0.5 to 0.75	6	3.2	11,540
0.75 to 1.0	7	8.7	36,281
1.0 to 2.0	16	44.7	200,353
Greater than or equal to 2.0	2	38.0	166,581
Total	65	103.9	448,041

Table 5-25 Benefit Cost Ratio Summary of Sites Analyzed in UpperColorado Region

Table 5-26 identifies and ranks the sites in the Upper Colorado region with benefit cost ratios (with green incentives) above 0.75. The Sixth Water Flow Control Structure site is ranked the highest in the region with a benefit cost ratio of 3.02 and an IRR of 17.1 percent, with green incentives. The Sixth Water Flow Control Structure site is part of Reclamation's Central Utah Project Bonneville Unit in Utah. The model selected a Pelton turbine for the site, which has an installed capacity of about 26 MW and annual energy production of 114,000 MWh. Figure 5-15 also shows the Sixth Water Flow Control Structure site, which is in the Uinta National Forest. Recreation and fish and wildlife mitigation costs were added to the site's total development costs.

The Upper Diamond Fork Flow Control Structure is ranked second highest in the region with a benefit cost ratio of 2.36 and an IRR of 13.6 percent. The Upper Diamond Fork Site is part of Reclamation's Central Utah Project Bonneville Unit in Utah. The Federal green incentive rate was applied to calculate economic benefits. The model selected a Francis turbine for the Upper Diamond Fork site, with an installed capacity of about 12 MW and annual energy production of about 52,000 MWh. Figure 5-15 also shows the Upper Diamond Fork site, which is downstream of the Sixth Water Flow Control Structure. Recreation and fish and wildlife mitigation costs were added to the total development costs for the site.

Table 5-26 Sites with Benefit Cost Ratio (With Green Incentives) Greater than 0.75 in Upper Colorado Region

Site ID	Site Name	Data Confidence	Installed Capacity (kW)	Annual Production (MWh)	Plant Factor	Cost per Installed Capacity (\$/kW)	Benefit Cost Ratio With Green	IRR With Green
	Sixth Water Flow							
UC-141	Control	Medium	25,800	114,420	0.52	\$1,482	3.02	17.1%
	Upper Diamond Fork							
UC-185	Flow Control Structure	Medium	12,214	52,161	0.5	\$1,806	2.36	13.6%
	M&D Canal-Shavano							
UC-89	Falls	Low	2,862	15,419	0.62	\$2,536	1.88	11.4%
	Spanish Fork Flow					• • • • •		
UC-159	Control Structure	Medium	8,114	22,920	0.33	\$1,620	1.66	9.6%
	Grand Valley					• • • •		
UC-49	Diversion Dam	Medium	1,979	14,246	0.84	\$4,584	1.55	8.6%
UC-52	Gunnison Tunnel	Medium	3,830	19,057	0.58	\$2,972	1.55	8.8%
UC-19	Caballo Dam	Low	3,260	15,095	0.52	\$3,128	1.45	7.9%
	South Canal, Sta.					A A A A A		
UC-147	181+10, "Site #4"	Medium	3,046	15,536	0.59	\$3,275	1.44	8.0%
UC-144	Soldier Creek Dam	High	444	2,909	0.76	\$4,033	1.39	7.9%
UC-131	Ridgway Dam	High	3,366	14,040	0.49	\$2,937	1.35	7.3%
UC-146	South Canal, Sta 19+ 10 "Site #1"	Medium	2,465	12,576	0.59	\$3,603	1.32	7.1%
UC-51	Gunnison Diversion Dam	Medium	1,435	9,220	0.75	\$4,832	1.28	6.7%
UC-150	South Canal, Sta.106+65, "Site #3"	Medium	2,224	11,343	0.59	\$3,777	1.26	6.6%
UC-162	Starvation Dam	High	3,043	13,168	0.5	\$3,461	1.23	6.2%
UC-179	Taylor Park Dam	High	2,543	12,488	0.57	\$4,323	1.12	5.4%
UC-57	Heron Dam	Medium	2,701	8,874	0.38	\$2,970	1.06	4.9%
	Southside Canal, Sta 171+ 90 thru 200+ 67							
UC-154	(2 canal drops)	Low	2,026	6,557	0.38	\$2,762	1.05	4.8%
UC-148	South Canal, Sta. 472+00, "Site #5"	Medium	1,354	6,905	0.59	\$4,548	1.05	4.8%
UC-177	Syar Tunnel	Medium	1,762	7,982	0.53	\$4,680	0.99	4.3%
UC-174	Sumner Dam	Medium	822	4,300	0.61	\$5,103	0.98	4.2%

Site ID	Site Name	Data Confidence	Installed Capacity (kW)	Annual Production (MWh)	Plant Factor	Cost per Installed Capacity (\$/kW)	Benefit Cost Ratio With Green	IRR With Green
	Southside Canal, Sta							
	349+ 05 thru 375+ 42							
UC-155	(3 canal drops)	Low	1,651	5,344	0.38	\$3,131	0.93	3.7%
UC-132	Rifle Gap Dam	High	341	1,740	0.59	\$4,621	0.92	3.5%
UC-72	Joes Valley Dam	High	1,624	6,596	0.47	\$4,780	0.85	3.0%
UC-145	South Canal Tunnels	Medium	884	4,497	0.59	\$5,665	0.84	2.8%
UC-117	Paonia Dam	Medium	1,582	5,821	0.43	\$4,482	0.79	2.3%

Table 5-26 Sites with Benefit Cost Ratio (With Green Incentives) Greater than 0.75 in Upper Colorado Region

5.5.2 Power Production

Table 5-27 summarizes potential power production at sites in the Upper Colorado region. The Upper Colorado region sites combined have a total installed capacity of about 104 MW and could produce up to about 448,000 MWh of energy annually. The Sixth Water Flow Control Structure has the highest installed capacity of the sites analyzed. The table also shows the distance from the site to the nearest transmission line. Fourteen sites in the region are over 10 miles to the nearest transmission lines.

Figure 5-15 : Upper Colorado Region Sixth Water/Upper Diamond Fork Flow Control Structures Site Map

Site ID	Site Name	Design Head (feet)	Design Flow (cfs)	Installed Capacity (kW)	Annual Production (MWh)	Plant Factor	T- Line Distance (miles)
UC-4	Angostura Diversion	3	190	33	91	0.32	0.65
UC-5	Arthur V. Watkins Dam	25	20	31	122	0.46	1.99
UC-6	Avalon Dam	17	216	230	1,031	0.52	2.76
UC-7	Azeotea Creek and Willow Creek Conveyance Channel Station 1565+00	18	65	72	240	0.39	5
UC-8	Azeotea Creek and Willow Creek Conveyance Channel Station 1702+75	17	65	68	223	0.38	5
UC-9	Azeotea Creek and Willow Creek Conveyance Channel Station 1831+17	15	65	60	199	0.38	5
UC-11	Azotea Tunnel	22	65	86	222	0.3	5
UC-13	Big Sandy Dam	51	89	286	884	0.36	21.09
UC-14	Blanco Diversion Dam	22	35	47	146	0.36	12.93
UC-15	Blanco Tunnel	109	35	276	849	0.36	12.93
UC-16	Brantley Dam	15	219	210	697	0.39	2.18
UC-19	Caballo Dam	43	1,213	3,260	15,095	0.52	1.55
UC-22	Crawford Dam	135	31	303	1,217	0.47	0.94
UC-23	Currant Creek Dam	118	17	146	1,003	0.8	11.62
UC-28	Dolores Tunnel	84	17	103	515	0.58	5
UC-36	East Canyon Dam	170	76	929	3,549	0.44	15.32
UC-44	Fort Sumner Diversion Dam	170	90	75	378	0.59	5
UC-46	Fruitgrowers Dam	28	17	29	124	0.5	5.66
UC-49	Grand Valley Diversion Dam	14	2,260	1,979	14,246	0.84	5
UC-51	Gunnison Diversion Dam	17	1,350	1,435	9,220	0.75	5
UC-52	Gunnison Tunnel	70	875	3,830	19,057	0.58	5
UC-56	Hammond Diversion Dam	8	71	35	148	0.30	5
UC-57	Heron Dam	249	150	2,701	8,874	0.38	4.97
UC-59	Huntington North Dam	55	6	2,701	51	0.3	0.76
UC-62	Hyrum Dam	75	90	491	2,052	0.49	8.61
UC-67	Inlet Canal	159	22	252	966	0.49	5
UC-72	Joes Valley Dam	159	141	1,624	6,596	0.45	7.68
UC-84	Lost Creek Dam	164	34	410	1,295	0.47	15.99
UC-89	M&D Canal-Shavano Falls	165		2,862			
UC-89 UC-93	Meeks Cabin Dam	130	240 169	1,586	15,419 4,709	0.62	5 21
UC-93 UC-98	Montrose and Delta Canal	3	511	96	4,709	0.35	5
UC-98 UC-100		66	134	96 634	478 1,563		
UC-100 UC-102	Moon Lake Dam	120	134	147	593	0.29	13.18 4.18
	Nambe Falls Dam Outlet Canal					0.47	
UC-116		252	32	586	1,839	0.37	5
UC-117	Paonia Dam	149	147	1,582	5,821	0.43	8.32
UC-124	Platoro Dam	131	89	845	3,747	0.52	23.64
UC-126	Red Fleet Dam	115	55	455	1,904	0.49	4.04
UC-131	Ridgway Dam	181	257	3,366	14,040	0.49	6.62
UC-132	Rifle Gap Dam	101	46	341	1,740	0.59	0.04
UC-135	San Acacia Diversion Dam	8	44	20	86	0.5	5
UC-136	Scofield Dam	39	110	266	906	0.4	0.82
UC-137	Selig Canal	2	186	23	98	0.5	5
UC-140	Silver Jack Dam	103	101	748	2,913	0.46	7.59
UC-141	Sixth Water Flow Control	1,149	309	25,800	114,420	0.52	6.14
UC-144	Soldier Creek Dam	233	26	444	2,909	0.76	0.56

Table 5-27 Hydropower Production Summary for Sites in Upper Colorado Region

Site ID	Site Name	Design Head (feet)	Design Flow (cfs)	Installed Capacity (kW)	Annual Production (MWh)	Plant Factor	T- Line Distance (miles)
UC-145	South Canal Tunnels	18	785	884	4,497	0.59	5
UC-146	South Canal, Sta 19+ 10 "Site #1"	51	773	2,465	12,576	0.59	5
UC-147	South Canal, Sta. 181+10, "Site #4"	63	773	3,046	15,536	0.59	5
UC-148	South Canal, Sta. 472+00, "Site #5"	28	773	1,354	6,905	0.59	5
UC-150	South Canal, Sta.106+65, "Site #3"	46	773	2,224	11,343	0.59	5
UC-154	Southside Canal, Sta 171+ 90 thru 200+ 67 (2 canal drops)	346	81	2,026	6,557	0.38	5
UC-155	Southside Canal, Sta 349+ 05 thru 375+ 42 (3 canal drops)	282	81	1,651	5,344	0.38	5
UC-159	Spanish Fork Flow Control Structure	900	124	8,114	22,920	0.33	3.5
UC-162	Starvation Dam	144	292	3,043	13,168	0.5	8.9
UC-164	Stateline Dam	89	44	282	720	0.3	19.35
UC-166	Steinaker Dam	120	70	603	1,965	0.38	0.99
UC-169	Stillwater Tunnel	65	88	413	1,334	0.38	12.24
UC-174	Sumner Dam	114	100	822	4,300	0.61	3.94
UC-177	Syar Tunnel	125	195	1,762	7,982	0.53	7.68
UC-179	Taylor Park Dam	141	250	2,543	12,488	0.57	14.62
UC-185	Upper Diamond Fork Flow Control Structure	547	309	12,214	52,161	0.5	4.34
UC-187	Upper Stillwater Dam	161	50	581	1,904	0.38	12.27
UC-190	Vega Dam	90	84	548	1,702	0.36	2.81
UC-196	Weber-Provo Canal	184	32	424	1,844	0.51	34.88
UC-197	Weber-Provo Diversion Canal	100	24	173	517	0.35	34.88

Table 5-27 Hydropower Production Summary for Sites in Upper Colorado Region

5.5.3 Economic Evaluation

Table 5-28 summarizes the economic evaluation of hydropower development at sites in the Upper Colorado region. All states in the Upper Colorado region can receive the Federal green incentive for hydropower development. On average, for the sites analyzed, the green incentives only resulted in an increase in the benefit cost ratio of about 0.03. Some sites in the Upper Colorado region had very high cost per installed capacity, low benefit cost ratios, and low IRRs, indicating they would not be economical to develop.

Site ID	Site Name	Total Construction	Annual O&M	Cost per Installed	Benefit Cost Ratio	IRR	Benefit Cost Ratio	IRR
		Cost	Cost	Capacity	With 0	Green	Without Green	
		(1,000 \$)	(1,000 \$)	(\$/kW)	Incen		Incentives	
UC-4	Angostura Diversion	\$564.2	\$33.4	\$17,183	0.12	< 0	0.11	< 0
UC-5	Arthur V. Watkins Dam	\$966.1	\$40.9	\$31,426	0.11	< 0	0.1	< 0
UC-6	Avalon Dam	\$2,260.8	\$76.5	\$9,818	0.42	< 0	0.4	< 0
000	Azeotea Creek and	<i>\\</i> 2,200.0	<i></i>	<i>\\</i> 0,010	0.12		0.1	
UC-7	Willow Creek Conveyance Channel Station 1565+00	\$2,215.3	\$66.6	\$30,674	0.1	< 0	0.1	< 0
	Azeotea Creek and Willow Creek Conveyance Channel							
UC-8	Station 1702+75	\$2,193.0	\$65.9	\$32,238	0.1	< 0	0.09	< 0
	Azeotea Creek and Willow Creek Conveyance Channel	* 0.440.4	0 04 7	005 700	0.00		0.00	
UC-9	Station 1831+17	\$2,149.4	\$64.7	\$35,760	0.09	< 0	0.08	< 0
UC-11	Azotea Tunnel	\$2,284.4	\$68.6	\$26,649	0.09	< 0	0.09	< 0
UC-13	Big Sandy Dam	\$9,260.7	\$211.6	\$32,416	0.1	< 0	0.09	< 0
UC-14	Blanco Diversion Dam	\$4,656.2	\$110.7	\$98,200	0.03	< 0	0.03	< 0
UC-15	Blanco Tunnel	\$5,526.7	\$137.5	\$20,041	0.16	< 0	0.15	< 0
UC-16	Brantley Dam	\$1,991.3	\$70.5	\$9,481	0.32	< 0	0.3	< 0
UC-19	Caballo Dam	\$10,197.9	\$305.0	\$3,128	1.45	7.9%	1.36	7.10 %
UC-22	Crawford Dam	\$1,592.4	\$66.7	\$5,264	0.64	< 0	0.6	< 0
UC-23	Currant Creek Dam	\$4,611.2	\$114.8	\$31,659	0.22	< 0	0.21	< 0
UC-28	Dolores Tunnel	\$2,277.1	\$69.2	\$22,077	0.21	< 0	0.2	< 0
UC-36	East Canyon Dam	\$8,271.6	\$216.9	\$8,907	0.44	< 0	0.41	< 0
UC-44	Fort Sumner Diversion		\$67.1				0.16	
UC-44 UC-46		\$2,213.6		\$29,472	0.17	< 0		< 0
	Fruitgrowers Dam Grand Valley	\$2,116.5	\$62.2	\$72,409	0.06	< 0	0.05	< 0
UC-49	Diversion Dam Gunnison Diversion	\$9,070.0	\$241.3	\$4,584	1.55	8.6%	1.45	7.7%
UC-51	Dam	\$6,934.9	\$200.4	\$4,832	1.28	6.7%	1.2	6.0%
UC-52	Gunnison Tunnel	\$11,385.5	\$366.6	\$2,972	1.55	8.8%	1.45	7.9%
0002	Hammond Diversion	<i>••••</i> ,••••••	<i>Queene</i>	<i>\\\\\\\\\\</i>		0.070		
UC-56	Dam	\$1,983.3	\$60.2	\$57,350	0.07	< 0	0.07	< 0
UC-57	Heron Dam	\$8,020.4	\$246.6	\$2,970	1.06	4.9%	1	4.4%
UC-59	Huntington North Dam	\$514.4	\$31.7	\$25,611	0.07	< 0	0.07	< 0
UC-62	Hyrum Dam	\$5,081.3	\$140.9	\$10,346	0.4	< 0	0.37	< 0
UC-67	Inlet Canal	\$2,596.6	\$82.7	\$10,320	0.34	< 0	0.32	< 0
UC-72	Joes Valley Dam	\$7,764.3	\$210.5	\$4,780	0.85	3.0%	0.8	2.6%
UC-84	Lost Creek Dam	\$6,599.2	\$164.2	\$16,082	0.2	< 0	0.19	< 0
	M&D Canal-Shavano							10.1
UC-89	Falls	\$7,260.4	\$256.6	\$2,536	1.88	11.4%	1.77	%
UC-93	Meeks Cabin Dam	\$11,641.2	\$302.3	\$7,341	0.4	< 0	0.38	< 0
UC-98	Montrose and Delta Canal	\$2,343.8	\$70.8	\$24,452	0.19	< 0	0.18	< 0
UC-100	Moon Lake Dam	\$7,328.5	\$185.8	\$11,564	0.22	< 0	0.2	< 0
UC-102	Nambe Falls Dam	\$2,373.7	\$73.7	\$16,097	0.24	< 0	0.23	< 0
UC-116	Outlet Canal	\$3,264.8	\$108.6	\$5,570	0.52	< 0	0.49	< 0
UC-117	Paonia Dam	\$7,092.5	\$203.7	\$4,482	0.79	2.3%	0.74	1.9%
UC-124	Platoro Dam	\$10,106.2	\$246.5	\$11,964	0.38	< 0	0.36	< 0

			,		-	- J -	Denefit	1
		Total	Annual	Cost per	Benefit		Benefit	
		Construction	O&M	Installed	Cost	IRR	Cost	IRR
Site ID	Site Name	Cost	Cost	Capacity	Ratio		Ratio	
		(1,000 \$)	(1,000 \$)	(\$/kW)	With C		Without	
			• • •		Incen		Incent	1
UC-126	Red Fleet Dam	\$3,031.9	\$100.1	\$6,666	0.59	< 0	0.55	< 0
UC-131	Ridgway Dam	\$9,885.1	\$296.2	\$2,937	1.35	7.3%	1.27	6.5%
UC-132	Rifle Gap Dam	\$1,574.9	\$65.5	\$4,621	0.92	3.5%	0.86	2.9%
	San Acacia Diversion			•				_
UC-135	Dam	\$1,895.0	\$57.2	\$94,272	0.04	< 0	0.04	< 0
UC-136	Scofield Dam	\$1,780.5	\$69.3	\$6,700	0.45	< 0	0.42	< 0
UC-137	Selig Canal	\$1,868.6	\$57.1	\$82,287	0.05	< 0	0.05	< 0
UC-140	Silver Jack Dam	\$4,863.9	\$145.6	\$6,504	0.57	< 0	0.54	< 0
	Sixth Water Flow							15.3
UC-141	Control	\$38,227.9	\$1,031.9	\$1,482	3.02	17.1%	2.84	%
UC-144	Soldier Creek Dam	\$1,790.2	\$72.6	\$4,033	1.39	7.9%	1.31	7.0%
UC-145	South Canal Tunnels	\$5,005.8	\$154.9	\$5,665	0.84	2.8%	0.79	2.4%
	South Canal, Sta 19+							
UC-146	10 "Site #1"	\$8,883.4	\$280.5	\$3,603	1.32	7.1%	1.24	6.3%
	South Canal, Sta.							
UC-147	181+10, "Site #4"	\$9,975.1	\$318.0	\$3,275	1.44	8.0%	1.35	7.2%
	South Canal, Sta.							
UC-148	472+00, "Site #5"	\$6,155.4	\$193.1	\$4,548	1.05	4.8%	0.98	4.2%
	South Canal,		• • • • •	·				
UC-150	Sta.106+65, "Site #3"	\$8,399.7	\$264.0	\$3,777	1.26	6.6%	1.18	5.9%
	Southside Canal, Sta							
	171+ 90 thru 200+ 67	A	• • • • • •	*				
UC-154	(2 canal drops)	\$5,595.9	\$199.5	\$2,762	1.05	4.8%	0.99	4.2%
	Southside Canal, Sta							
	349+ 05 thru 375+ 42	AF (AA A	.	*• • • • •		0 70/		0.00/
UC-155	(3 canal drops)	\$5,169.8	\$180.4	\$3,131	0.93	3.7%	0.88	3.2%
110 450	Spanish Fork Flow	040 447 5	0 405.0	#1 000	4.00	0.00/	4 57	0.00/
UC-159	Control Structure	\$13,147.5	\$435.9	\$1,620	1.66	9.6%	1.57	8.6%
UC-162	Starvation Dam	\$10,530.6	\$302.6	\$3,461	1.23	6.2%	1.15	5.6%
UC-164	Stateline Dam	\$8,492.4	\$195.1	\$30,145	0.09	< 0	0.08	< 0
UC-166	Steinaker Dam	\$2,388.4	\$93.9	\$3,959	0.71	1.0%	0.67	0.7%
UC-169	Stillwater Tunnel	\$6,342.4	\$159.5	\$15,340	0.21	< 0	0.2	< 0
UC-174	Sumner Dam	\$4,193.5	\$130.0	\$5,103	0.98	4.2%	0.92	3.7%
UC-177	Syar Tunnel	\$8,246.1	\$222.7	\$4,680	0.99	4.3%	0.93	3.8%
UC-179	Taylor Park Dam	\$10,991.2	\$299.3	\$4,323	1.12	5.4%	1.05	4.8%
	Upper Diamond Fork	•		• · · · ·				12.2
UC-185	Flow Control Structure	\$22,058.5	\$613.6	\$1,806	2.36	13.6%	2.22	%
UC-187	Upper Stillwater Dam	\$6,064.5	\$158.5	\$10,431	0.32	< 0	0.31	< 0
UC-190	Vega Dam	\$3,012.5	\$103.7	\$5,499	0.51	< 0	0.48	< 0
UC-196	Weber-Provo Canal	\$14,266.2	\$311.3	\$33,648	0.14	< 0	0.13	< 0
	Weber-Provo	• • • •		•				
UC-197	Diversion Canal	\$13,771.4	\$291.4	\$79,382	0.04	< 0	0.04	< 0

 Table 5-28 Economic Evaluation Summary for Sites in Upper Colorado Region

5.5.4 Constraints Evaluation

Figures 5-16 and 5-17 show constraints associated with the sites analyzed in the Hydropower Assessment Tool. Because of the size of the Upper Colorado region, the figures divide the region into east and west. Table 5-29 summarizes the number of sites with potential regulatory constraints in the Upper Colorado region. Sixty-nine sites are within National Forests.

In addition to mapping regulatory constraints, Reclamation staff identified potential fish and wildlife and fish passage constraints for sites in the Upper Colorado region with benefit cost ratios above 0.75. These sites included Caballo Dam, Grand Valley Diversion Dam, Gunnison Diversion Dam, Heron Dam, Joes Valley Dam, Paonia Dam, Ridgway Dam, Rifle Gap Dam, Sixth Water Flow Control Structure, Soldier Creek Dam, Spanish Fork Flow Control Structure, Starvation Dam, Sumner Dam, Syar Tunnel, Taylor Park Dam, and Upper Diamond Fork Flow Control Structure. Appropriate mitigation costs were added to sites with regulatory or fish constraints.

Constraints	
Regulatory Constraint	No. of Sites
Critical Habitat	2
Indian Lands	3
National Forest	69
National Historic Areas	5
National Park	0
Wild & Scenic River	0
Wilderness Preservation Area	1
Wilderness Study Area	2
Wildlife Refuge	1
National Monument	0

Table 5-29 Number of Sites in the Upper Colorado Region with Potential Regulatory Constraints

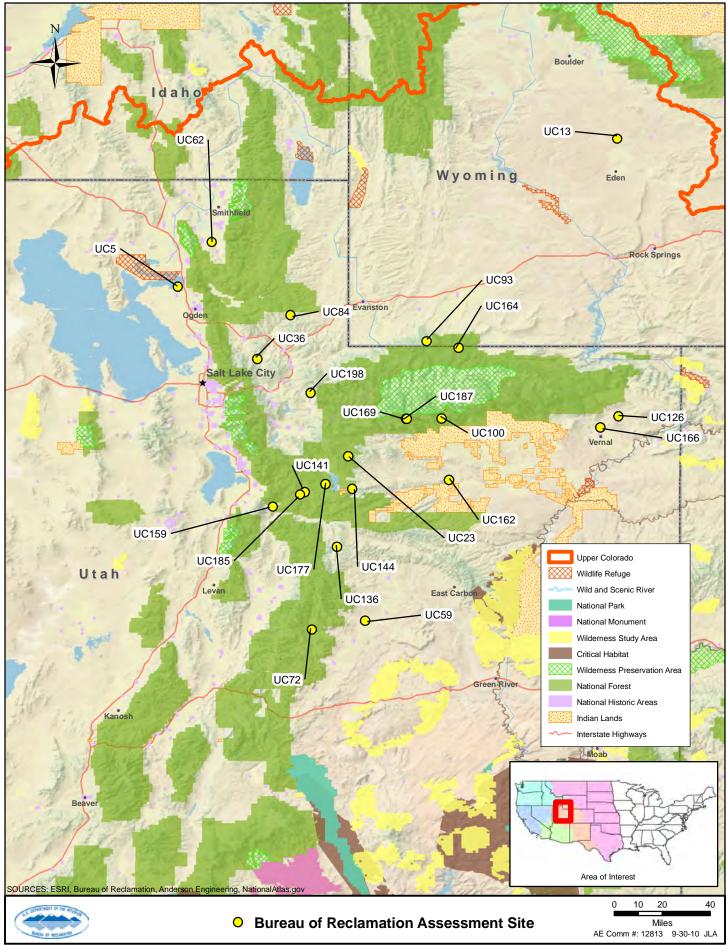


Figure 5-16: Upper Colorado Region (West) Potential Constraints Map

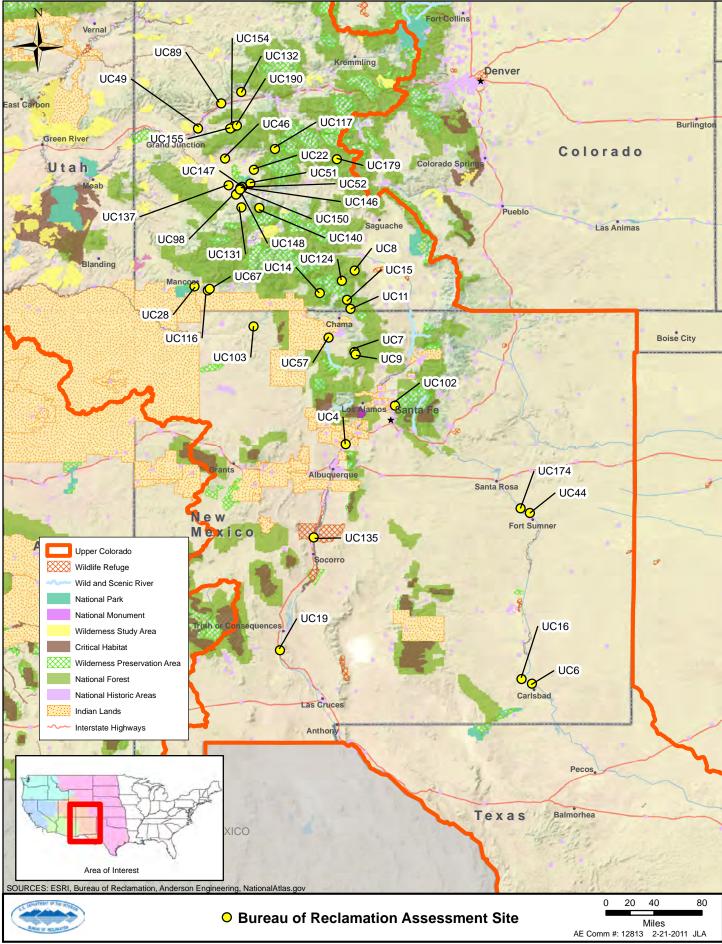
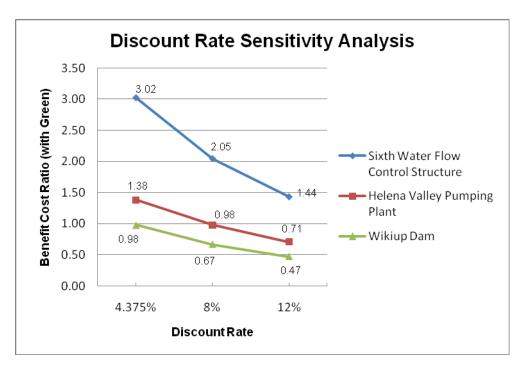


Figure 5-17 : Upper Colorado Region (East) Potential Constraints Map

5.6 Discount Rate Sensitivity Analysis


In order to compute net present value, it is necessary to discount future benefits and costs to reflect the time value of money. In general, benefits and costs are worth more if they are experienced sooner. The higher the discount rate, the lower is the present value of future cash flows. Federal planning studies require use of the Federal discount rate for economic analysis, which is published annually by the Office of Management and Budget. For this study, the Fiscal Year 2010 Federal Discount Rate of 4.375 percent was used to calculate present worth of benefits and costs of potential hydropower development.

If private developers or municipalities choose to pursue a Reclamation site for hydropower development, the Federal discount rate may not be applicable. They would likely face a higher discount rate, depending on ownership and the financing source. Discount rates could be higher or lower than the current rate and historically a high has been 12 percent. This section presents a sensitivity analysis to determine how the benefit cost ratio is affected by varying the discount rate. The sensitivity analysis was performed on three sites, Sixth Water Flow Control Structure in the Upper Colorado region, Helena Valley Pumping Plant in the Great Plains region, and Wikiup Dam in the Pacific Northwest region, using discount rates of 4.375 percent, 8 percent, and 12 percent.

Figure 5-18 shows the results of the sensitivity analysis of discount rates for the three sites. Benefit cost ratios are shown with green incentives. Under a 4.375 percent discount rate, the Sixth Water Flow Control Structure and Helena Valley Pumping Plant sites would be economical to develop because the benefit cost ratio is greater than 1.0. The Wikiup Dam site would also have potential with a benefit cost ratio just under 1.0.

With an 8 percent discount rate, the Sixth Water Flow Control Structure site would still be economical, the Helena Valley Pumping Plant site would have potential, but the Wikiup Dam site's benefit cost ratio would fall to 0.67, which indicates it may not be economical to develop the site with some financing options.

With a 12 percent discount rate, the Sixth Water Flow Control Structure site's benefit cost ratio was still well above 1.0, but the Helena Valley Pumping Plant site's benefit cost ratio fell to 0.71, which may not be economical to develop at higher discount rates.

Figure 5-18 Discount Rate Sensitivity Analysis Results

Figure 5-18 shows that the benefit cost ratio is sensitive to changes in the discount rate. The benefit cost ratios decreased in the range of 30 percent when the discount rate was increased to 8 percent from 4.35 percent. The benefit cost ratios decreased in the range of 50 percent when the discount rate was increased to 12 percent relative to from 4.35 percent. If private developers or municipalities face a relative high discount rate, some sites indicated as economically feasible in this analysis may not be. Developers should consider this if a site is further pursued.

The sensitivity analysis also shows the contribution of green incentive benefits in California to the economic viability of a site. California has the most aggressive incentives of any state in the analysis for hydropower development. In many cases, state incentives effectively double the avoided cost or the prices typically received by developers. Figure 5-19 illustrates the difference green incentive makes for the Boca Dam in California under a 4.375 percent, 8 percent, and 12 percent discount rate. The benefit cost ratio with green incentives shows the site would be economical under the 4.375 percent and 8 percent discount rates and close to economic under the 12 percent discount rate. The benefit cost ratio without green incentives indicates the site could be close to economically feasible under the 4.375 percent discount rate, but the higher discount rates (8 and 12 percent) result in a much lower benefit cost ratio.

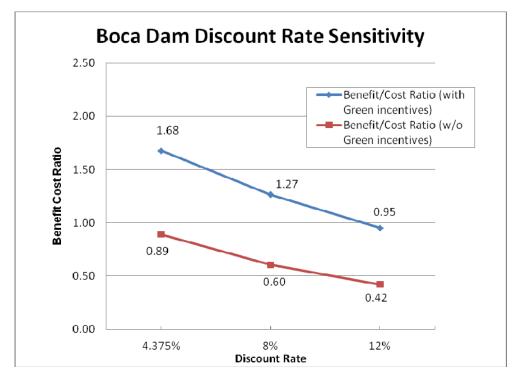


Figure 5-19 Boca Dam Site Discount Rate Sensitivity Analysis

5.7 Exceedance Level Sensitivity Analysis

As described in Chapter 3, this analysis sets the design flow and design head of the proposed hydropower plant at a 30 percent exceedance level, based on the flow and net head exceedance curves calculated with available hydrologic data. Different exceedance percentages can be selected for sizing the hydropower plant, which could increase or decrease the plant capacity. Changing the plant capacity would effectively change the amount of energy the plant can generate and the costs to develop, operate, and maintain the plant. During feasibility analysis of a potential site, the developer should analyze different plant sizes to evaluate the most economic plant size. This is usually accomplished by picking different exceedance percentages from the flow duration curve and calculating the benefit cost ratio for each alternate size. For example, exceedance levels for sizing the plant might be compared at the 15, 20, 25, 30 and 35 percent exceedance levels.

This sensitivity analysis compares the benefit cost ratios of selected sites based on 30 percent and 20 percent exceedance levels. In general, plants designed at a 20 percent exceedance level would have a larger plant capacity and can generate more energy when flows are available. Table 5-30 shows sensitivity results for annual generation and benefit cost ratios (with green incentives) of six sites with installed capacities set at 30 percent and 20 percent exceedance levels.

	Table 5-30 20 and 30 Percent Exceedance Level Sensitivity Results											
Site ID	Site Name		Capacity IW)		Annual Generation (MWh)		Cost Ratio					
		30%	20%	30%	20%	30%	20%					
GP-52	Helena Valley Pumping Plant	2.6	3.3	9,608	10,879	1.38	1.35					
PN-49	Keechelus Dam	2.4	3.9	6,746	8,220	0.87	0.71					
PN-80	Ririe Dam	1.0	2.1	3,778	5,582	0.94	0.90					
UC-51	Gunnison Diversion Dam	1.4	1.9	9,220	9,963	1.28	1.19					
UC-57	Heron Dam	2.7	4.4	8,874	12,274	1.09	1.12					
UC-141	Sixth Water Flow Control Structure	25.8	35.2	114,420	128,420	3.02	2.69					

For the six sites analyzed, the capacity and annual production increased when the plant design was set at a 20 percent exceedance versus 30 percent exceedance. For the six sites, the sum of the installed capacities is 50.8 MW under a 20 percent exceedance relative to 35.9 MW under a 30 percent exceedance, a 42 percent increase. This is a relatively large increase in capacity; however, development and annual costs would also increase for larger plants. For five of the six sites, the benefit cost ratio fell when the 20 percent exceedance was used. This indicates that the costs of adding capacity were rising faster than the revenues (energy production) of the added capacity. For some sites, such as the Heron Dam, site characteristics could result in a higher benefit cost ratio under the 20 percent exceedance rate.

This study consistently used a 30 percent exceedance, which resulted in more sites having higher benefit cost ratios. Using a 20 percent exceedance could have resulted in higher installed capacities and more energy generation, but the number of economically feasible projects, based on the benefit cost ratios, would decrease. The results of this sensitivity analysis indicate the necessity of evaluating various exceedance rates during feasibility-level analysis to determine the most economic plant size.

5.8 Sites with Seasonal Flows

The exceedance level sensitivity analysis in Section 5.7 focuses on sites that have benefit cost ratios close to or above 1.0, meaning the sites could be economical to develop for hydropower. The analysis above shows that, for most sites, designing plant capacity at a 20 percent exceedance level reduces the benefit cost ratio, meaning that incremental costs of adding capacity are rising faster than incremental benefits of energy production. For some sites with unusual duration curves, the benefit cost ratio could increase at lower exceedance levels; sites with seasonal flows fall into this category.

Much of Reclamation's infrastructure delivers water for agricultural irrigation purposes. The irrigation season varies by region, but generally spans from April through October. In some areas, the season is shorter, spanning from May through September. Some sites analyzed in the Resource Assessment only have flows during the irrigation season and have zero or very low flows during the remainder of the year. Under the 30 percent exceedance analysis, sites with seasonal flow had benefit cost ratios mostly under 0.75, indicating hydropower development would be uneconomical. In general, setting the design flow at a 20 percent exceedance for sites with seasonal flow would increase capacity to capture more flow and increase energy generated; however, development costs would also increase. This section performs a sensitivity analysis on exceedance levels for sites GP-1 A-Drop Project, Greenfield Main Canal Drop and GP-54 Horsetooth Dam to determine how much more seasonal flow could be captured and energy generated at lower exceedance levels and the associated economic implications. This section also identifies additional sites in the Resource Assessment study area with seasonal flows and what the 20 percent flow exceedance level would be.

The Hydropower Assessment Tool selects design flow for the power plant based on 30 percent exceedance calculated on year round flows. Because of months with low to no flows, the design flow would be set at a level which may be much lower than the seasonal flows; therefore, much of the seasonal flow may not be captured by the power plant. Sizing the plant larger would capture more of the seasonal flow and produce more energy at increased cost. Sites with seasonal flows tend to have a steeper sloped flow duration curve than sites with more constant flows. Figure 5-20 shows a flow duration curve for site GP-1 A-Drop Project, Greenfield Main Canal Drop, which has flows May through August, sometimes into September, and no flows during the other months.

For the A-Drop Project, the 30 percent exceedance level for flows is zero, causing the model to determine no hydropower potential at this site. At a 20 percent exceedance, the design flow would be set at 1,090 cfs and the model sizes the plant at 2.3 MW, which would have an annual generation of 5,974 MWh at the site. However, the benefit cost ratio would only be 0.69 at 20 percent exceedance, which, similar to the 30 percent exceedance results, indicates it is still uneconomical to develop.

Table 5-31 shows production and economic results for the A-Drop Project at varying flow exceedance levels. As discussed above, the installed capacity and annual generation will increase at lower exceedance levels. The benefit cost ratio is highest at a 20 percent exceedance and then begins to decrease again at the 15 and 10 percent exceedance levels. The economic analysis shows that costs are greater than benefits at each exceedance level; and, each unit of energy produced costs more than the revenue it generates. None of the exceedance level sensitivity runs for the A-Drop Project indicate that the site would be economic to develop.

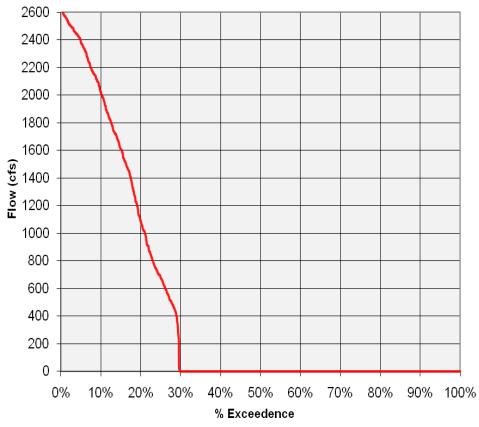


Figure 5-20 A-Drop Project Flow Exceedance Curve

GP-1 A-Drop Pr	oject, Greenfie	Table 5-3 Id Main Ca		easonal Flo	w Analysis						
	Flow Exceedance Level										
	10%	15%	20%	25%	30%	35%					
Selected Turbine Type	Low Head	Low Head	Kaplan	Kaplan	<u>a</u> >	<u>∎</u> ≥					
Selected Design Head	34	34	34	34	noc	noc					
Selected Design Flow	2,030	1,613	1,090	680	re, r this	re, r this					
Installed Capacity	4,204	3,341	2,318	1,446	refo al at	refo al at	refo al at				
					the	the					
Production (MWh)					is 0; therefore, mode potential at this flow	35% exceedance for flows is 0; therefore, model determined no hydropower potential at this flow exceedance level					
January	0	0	0	0	30% exceedance for flows is 0; therefore, model determined no hydropower potential at this flow exceedance level	ws wer					
February*	0	0	0	0		opo or fic	or flc				
March	0	0	0	0	ce fo nydr el	in to					
April	0	0	0	0	danc no l	dance no hy e level					
Мау	1,225	1,093	1,003	690	30% exceedance determined no hy exceedance level	35% exceed determined r exceedance					
June	2,336	2,035	1,742	1,155	eeda	é ex ermii eeda					
July	2,838	2,361	1,892	1,182	30% dete exc	35% dete exc					

Table 5-31 GP-1 A-Drop Project, Greenfield Main Canal Drop Seasonal Flow Analysis								
				lance Level				
	10%	15%	20%	25%	30%	35%		
August	1,035	1,038	1,132	821				
September	145	161	205	201	.; o §	0 0: 0 0:		
October	0	0	0	0				
November	0	0	0	0	edance for flows is model determined er potential at this ce level	edance for flows is model determined er potential at this ce level		
December	0	0	0	0	deteri deteri	for fl leter itial a		
Annual production*	7,579	6,688	5,974	4,049	ance f odel d potent level	ance for odel dete potential level		
					r pod e le	r pod e leo		
Benefit/Cost Ratio (with Green incentives)	0.65	0.67	0.69	0.62				
Internal Rate of Return (with Green incentives)	0.23%	0.50%	0.87%	Negative	30% exce therefore, hydropow exceedan	35% exce therefore, hydropow exceedan		

Table 5-32 shows similar results for the Horsetooth Dam site. The benefit cost ratio is highest under the 15 percent exceedance level; however, none of the exceedance level sensitivity runs show that the site would be economic to develop. Sizing sites with seasonal flows at a lower exceedance level would increase potential generation, but, in general, development of the sites would not be economically viable. The developer would have higher development costs for a larger capacity facility, and the power plant can remain idle for up to six, sometimes more, months a year. It would take a much longer time period to recover costs, as indicated by the low benefit cost ratios.

		Table 5-32	-								
GP-54	GP-54 Horsetooth Dam Seasonal Flow Analysis										
	Flow Exceedance Level										
	<u>10% 15% 20% 25% 30% 35%</u>										
Selected Turbine Type	Francis	Francis	Francis	Francis	Francis	Francis					
Selected Design Head	127	125	123	121	119	117					
Selected Design Flow	362	268	188	107	40.8	17					
Installed Capacity	3,318	2,425	1,670	934	350	144					
Production (MWh)											
January	0	0	0	0	0	0					
February*	0	0	0	0	0	0					
March	0	0	0	0	0	0					
April	113	97	77	49	32	22					
Мау	557	491	399	261	125	63					
June	268	251	221	170	104	62					
July	1,328	1,080	809	486	196	86					
August	1,141	949	731	448	182	79					

GP-54	Table 5-32 GP-54 Horsetooth Dam Seasonal Flow Analysis									
		F	low Excee	dance Leve	el					
	10%	15%	20%	25%	30%	35%				
September	470	421	347	241	125	63				
October	290	263	221	161	82	43				
November	0	0	0	1	2	2				
December	0	0	0	0	0	0				
Annual production*	4,168	3,551	2,805	1,817	847	419				
Benefit/Cost Ratio (with Green incentives) 0.51 0.53 0.52 0.46 0.34 0.23										
Internal Rate of Return (with Green incentives)	Negative	Negative	Negative	Negative	Negative	Negative				

Table 5-33 lists other sites with seasonal flows. At a 30 percent exceedance level, these sites had benefit cost ratios less than 1.0. Because of seasonal flows, all but two sites (Fresno Dam and Joes Valley Dam) have the same or slightly higher benefit cost ratios at a 20 percent exceedance level relative to 30 percent exceedance; however, they would still not be economical to develop. The benefit cost ratio at even lower exceedance levels would likely change similar to the analysis above for A-Drop Project and Horsetooth Dam – increased capacity and generation at lower exceedance levels, but the site remains uneconomical to develop.

If sites with seasonal flows are further analyzed, developers should investigate alternative design capacities than 30 percent flow exceedance. Design flows can be easily changed in the Hydropower Assessment Tool (see Appendix D). There may be some additional sites in the Resource Assessment not listed in Table 5-33 with seasonal flows that have very low head available for hydropower production. Sites with seasonal flows can generally be identified by a steeply sloped flow duration curve. Table 2-3 further identifies some seasonal flow characteristics for sites.

	Table 5-33 20 Percent Exceedance Analysis of Sites with Seasonal Flows and Benefit Cost Ratios Less Than 1.0 at 30 Percent Exceedance										
Site Number	Site Name	Seasonal Flow Description	30% Design Head (ft)	30% Design Flow (cfs)	BC Ratio with Green (at 30%)	20% Design Head (ft)	20% Design Flow (cfs)	BC Ratio with Green (at 20%)			
GP-1	A-Drop Project, Greenfield Main Canal Drop	Flows only May-August, up to about 2,500 cfs	34	0	N/A	34	1,090	0.69			
GP-10	Belle Fourche Dam	Flows only May- September, 500- 600 cfs for 2-3 months	50	160	0.49	52	400	0.55			
GP-15	Bull Lake Dam	Year-round flows, higher June- September	50	299	0.41	55	606	0.63			
GP-18	Carter Lake Dam No.1	Flows April-October, higher (300- 400 cfs) July-August	142	82	0.56	147	156	0.58			
GP-24	Corbett Diversion Dam	Flows April-September, peak at 1,000-1,100 cfs	12	850	0.59	12	938	0.60			
GP-35	Enders Dam	Higher flows June-August, mostly <200 cfs	62	60	0.22	65	129	0.29			
GP-39	Fresno Dam	Year-round flows, higher April- October, up to about 1,200 cfs mostly	47	560	0.88	50	778	0.84			
GP-54	Horsetooth Dam	Flows only May-October, flows vary by year	119	41	0.34	122	188	0.52			
GP-60	Johnson Project, Greenfield Main Canal Drop	Flows only May through August, about 100-250 cfs	46	61	0.21	46	133	0.31			
GP-64	Knights Project, Greenfield Main Canal Drop	Flows only May through August, mostly <50 cfs	60	0	N/A	60	35	0.25			
GP-68	Lake Sherburne	Flows mostly April-September, flow vary by year	45	317	0.24	51	488	0.34			
GP-71	Lovewell Dam	Flows mostly April/May-September, some winter flows, inconsistent flows	47.4	0	N/A	49	83	0.12			
GP-74	Mary Taylor Drop Structure	Flows May-August/September, up to about 300 cfs mostly	43.7	2.3	N/A	44	123	0.26			
GP-80	Minatare Dam	Flows July-September, vary 200-400 cfs	35	2	0.01	38	160	0.22			
GP-94	Paradise Diversion Dam	Flows June-September, mostly <150 cfs	11.8	0	N/A	12	89	0.10			
GP-98	Pishkun Dike – No. 4	Flows May-September, vary, mostly	22	447	0.23	25	712	0.39			

	Table 5-33 20 Percent Exceedance Analysis of Sites with Seasonal Flows and Benefit Cost Ratios Less Than 1.0 at 30 Percent Exceedance									
Site Number	Site Name	Seasonal Flow Description	30% Design Head (ft)	30% Design Flow (cfs)	BC Ratio with Green (at 30%)	20% Design Head (ft)	20% Design Flow (cfs)	BC Ratio with Green (at 20%)		
		>500 cfs		(0.0)	((
GP-114	Saint Mary Canal Drop No. 1	Flows April-September, vary but most from 400-600 cfs	36	537	0.56	36	594	0.57		
GP-115	Saint Mary Canal Drop No. 2	Flows April-September, vary but most from 400-600 cfs	29	537	0.50	29	594	0.51		
GP-116	Saint Mary Canal Drop No. 3	Flows April-September, vary but most from 400-600 cfs	26	537	0.47	26	594	0.49		
GP-117	Saint Mary Canal Drop No. 4	Flows April-September, vary but most from 400-600 cfs	66	537	0.82	66	594	0.83		
GP-118	Saint Mary Canal Drop No. 5	Flows April-September, vary but most from 400-600 cfs	57	537	0.75	57	594	0.76		
GP-120	Sun River Diversion Dam	Year round flows, highest April- September, vary but can be 3,000- 5,000 cfs in some years	45	716	0.65	45	1,423	0.68		
GP-135	Willwood Canal	Flows only mid-April-mid-October, vary 150-400 cfs	37	297	0.70	37	336	0.70		
GP-137	Wind River Diversion Dam	Flows only May-September, only 3 years data	19	335	0.51	19	435	0.52		
LC-24	Laguna Dam	Flows only April- September, constant at 200 cfs	10	200	0.63	10	200	0.63		
MP-15	Gerber Dam	Flows only May- September, generally <140 cfs	35	112	0.14	37	126	0.15		
MP-17	John Franchi Dam	Flows only April-September, 700- 900 cfs for 3 months	15	500	0.90	15	700	0.96		
PN-41	Golden Gate Canal	Flows only May-October, generally <250 cfs, only 2 years data	43	191	0.56	43	240	0.59		
PN-43	Harper Dam	Flows only April- September, constant at 75 cfs	80	75	0.31	80	75	0.31		
PN-44	Haystack Canal	Flows April-mid-October, generally 200-320 cfs	57	225	0.85	57	257	0.85		
PN-57	Mason Dam	Higher flows April- September, vary by year, 100-400 cfs	139	164	0.72	143	220	0.76		
PN-105	Wild Horse – BIA	Flows mid-May- September, vary by year	70	53	0.27	72	95	0.34		
UC-7	Azeotea Creek and Willow Creek Conveyance Channel Station 1565+00	Flows only April-September, >500 cfs April-June in most years	18	65	0.10	19	208	0.21		

	20 Percent Exceedance	Ta e Analysis of Sites with Seasonal Flow	ble 5-33	iit Cost Ratio	e l oss Than 1	0 at 30 Perc	ent Exceedan	<u></u>
Site Number	Site Name	Seasonal Flow Description	30% Design Head (ft)	30% Design Flow (cfs)	BC Ratio with Green (at 30%)	20% Design Head (ft)	20% Design Flow (cfs)	BC Ratio with Green (at 20%)
UC-8	Azeotea Creek and Willow Creek Conveyance Channel Station 1702+75	Flows only April-September, >500 cfs April-June in most years	17	65	0.10	18	208	0.20
UC-9	Azeotea Creek and Willow Creek Conveyance Channel Station 1831+17	Flows only April-September, >500 cfs April-June in most years	15	65	0.10	16	208	0.18
UC-11	Azotea Tunnel	Flows only April-September, >500 cfs April-June in most years	22	65	0.09	23	208	0.20
UC-14	Blanco Diversion Dam	Flows April-July/August, vary 100- 300 cfs mostly	22	35	0.03	22	96	0.07
UC-15	Blanco Tunnel	Flows April-July/August, vary 100- 300 cfs mostly	109	35	0.16	109	96	0.25
UC-72	Joes Valley Dam	Flows mostly year round, but higher in May-August	159	141	0.85	162	172	0.83
UC-93	Meeks Cabin Dam	Flows mostly year round, but higher in May-September	130	169	0.40	140	260	0.47
UC-100	Moon Lake	Flows only April/May-September, vary 100-300 cfs, up to 500 cfs in some months	66	134	0.22	72	240	0.29
UC-116	Outlet Canal	Flows only May- October, mostly 40- 60 cfs	252	32	0.52	252	44	0.58
UC-124	Platoro Dam	Flows mostly year round, but higher in May-August	131	89	0.38	131	210	0.46
UC-136	Scofield Dam	Flows mostly year round, but higher in May-August	39	110	0.45	40	150	0.49
UC-166	Steinaker Dam	Flows vary, only May- September in most years, mostly <150 cfs	120	70	0.71	125	102	0.71
UC-190	Vega Dam	Flows May-September, mostly 100- 200 cfs	90	84	0.51	90	122	0.56

This page intentionally left blank.

Chapter 6 Conclusions

This chapter summarizes results of all sites, not separated by region, and presents conclusions and potential future uses for study results.

6.1 Results Summary

Reclamation initially identified 530 sites, including reservoir dams, diversion dams, canals, tunnels, dikes and siphons, as potential for adding hydropower. Table 6-1 summarizes the number of sites analyzed in the Resource Assessment relative to hydropower potential, no hydropower potential, requiring further analysis, and removed from analysis. Significant efforts were made to collect hydrologic data for all 530 sites, including obtaining data from existing stream gages, facility designs, Reclamation area offices', field offices', and irrigation districts' records, and field staff knowledge. Based on available hydrologic data, information from Reclamation and irrigation district staff, assumptions and calculations from the Hydropower Assessment Tool, it was determined that 191 sites have hydropower potential and 218 of the 530 sites would not have hydropower potential.

Reclamation has identified 52 canals and tunnels sites for further analysis. Data available for these sites was not sufficient to estimate potential hydropower production. Reclamation has begun a separate study to confirm existing data and collect additional flow distribution and net head data for canal and tunnel sites. After data is collected, hydropower potential and economic viability of the sites can be estimated using the Hydropower Assessment Tool.

	No. of Sites
Total Sites Identified	530
Sites with No Hydropower Potential	218
Total Sites with Hydropower Potential	191
Canal or Tunnel Sites (Separate Analysis In	52
Progress)	
Sites Removed from Analysis ¹	69
1 – Sites were removed from the analysis for various reasons, inc another site identified, no longer a Reclamation-owned site, hydro developed or being developed at the site.	

Table 6-1 Site Inventory Summary

The Hydropower Assessment Tool calculated a benefit cost ratio for each site with available hydrologic data as an indicator of the economic viability of developing hydropower. Table 6-2 summarizes the number of sites within

different ranges of benefit cost ratios, with green incentives. There were 191 sites with power potential; however, the economic results varied widely and clearly showed some sites to be uneconomical to develop.

	No. of Sites	Total Installed Capacity (MW)	Total Annual Production (MWh)
Sites with Hydropower Potential	191	268.3	1,168,248
Benefit Cost Ratio (with Green Incentives) from:			
0 to 0.25	62	10.4	35,041
0.25 to 0.5	35	15.7	57,955
0.5 to 0.75	24	17	67,375
0.75 to 1.0	27	40.5	147,871
1.0 to 2.0	36	79.9	375,353
Greater than or equal to 2.0	7	104.8	484,653

Table 6-2 Benefit Cost Ratio (with Green Incentives) Summary of SitesWith Hydropower Potential

Table 6-3 presents sites with a benefit cost ratio, with green incentives, greater than 0.75. Although the standard for economic viability is a benefit cost ratio of greater than 1.0, sites with benefit cost ratios of 0.75 and higher were ranked given the preliminary nature of the analysis. The table shows a potential of approximately 225 MW of installed capacity and 1,000,000 MWh of energy could be produced annually at existing Reclamation facilities if all sites with a benefit cost ratio greater than 0.75 are summed. It is important to note that results for sites with low confidence data may not be as reliable as sites with higher confidence data. There are 10 sites with low confidence data, including the third and fourth ranked sites. The IRR for sites listed in Table 6-3 varies from a high of 23 percent to 1.8 percent.

Table 6-3 Sites Analyzed with Benefit Cost Ratio (with Green Incentives) Greater than0.75

Site ID	Site Name/Facility	Data Confidence Level	Installed Capacity (kW)	Annual Production (MWh)	Benefit Cost Ratio (with Green)	IRR (with Green)
LC-6	Bartlett Dam	Medium	7,529	36,880	3.5	23.0%
GP-146	Yellowtail Afterbay Dam	Medium	9,203	68,261	3.05	18.2%
	Sixth Water Flow					
UC-141	Control	Medium	25,800	114,420	3.02	17.1%
LC-20	Horseshoe Dam	Low	13,857	59,854	2.98	19.0%
GP-125	Twin Buttes Dam	Low	23,124	97,457	2.61	16.0%
	Upper Diamond Fork					
UC-185	Flow Control Structure	Medium	12,214	52,161	2.36	13.6%
GP-99	Pueblo Dam	High	13,027	55,620	2.34	14.0%

Table 6-3 Sites Analyzed with Benefit Cost Ratio (with Green Incentives) Greater than0.75

Site ID	Site Name/Facility	Data Confidence Level	Installed Capacity (kW)	Annual Production (MWh)	Benefit Cost Ratio (with Green)	IRR (with Green)
MP-30	Prosser Creek Dam	High	872	3,819	1.98	14.2%
PN-6	Arthur R. Bowman Dam	High	3,293	18,282	1.9	11.2%
	M&D Canal-Shavano	Ŭ	,	,		
UC-89	Falls	Low	2,862	15,419	1.88	11.4%
GP-56	Huntley Diversion Dam	Medium	2,426	17,430	1.86	10.9%
MP-2	Boca Dam	High	1,184	4,370	1.68	11.3%
PN-31	Easton Diversion Dam	High	1,057	7,400	1.68	9.9%
	Spanish Fork Flow					
UC-159	Control Structure	Medium	8,114	22,920	1.66	9.6%
LC-21	Imperial Dam	Low	1,079	5,325	1.61	10.0%
GP-46	Gray Reef Dam	High	2,067	13,059	1.58	8.7%
MP-8	Casitas Dam	High	1,042	3,280	1.57	10.7%
	Grand Valley Diversion					
UC-49	Dam	Medium	1,979	14,246	1.55	8.6%
UC-52	Gunnison Tunnel	Medium	3,830	19,057	1.55	8.8%
GP-23	Clark Canyon Dam	High	3,078	13,689	1.52	8.6%
UC-19	Caballo Dam	Low	3,260	15,095	1.45	7.9%
	South Canal, Sta.					
UC-147	181+10, "Site #4"	Medium	3,046	15,536	1.44	8.0%
PN-95	Sunnyside Dam	Medium	1,362	10,182	1.43	7.8%
UC-144	Soldier Creek Dam	High	444	2,909	1.39	7.9%
	Helena Valley Pumping					
GP-52	Plant	High	2,626	9,608	1.38	7.8%
UC-131	Ridgway Dam	High	3,366	14,040	1.35	7.3%
GP-41	Gibson Dam	High	8,521	30,774	1.32	7.1%
UC-146	South Canal, Sta 19+ 10 "Site #1"	Medium	2,465	12,576	1.32	7.1%
	Gunnison Diversion					
UC-51	Dam	Medium	1,435	9,220	1.28	6.7%
PN-88	Scootney Wasteway	Low	2,276	11,238	1.26	6.6%
UC-150	South Canal, Sta.106+65, "Site #3"	Medium	2,224	11,343	1.26	6.6%
	Twin Lakes Dam					
GP-126	(USBR)	High	981	5,648	1.24	6.5%
GP-95	Pathfinder Dam	High	743	5,508	1.23	6.2%
UC-162	Starvation Dam	High	3,043	13,168	1.23	6.2%
LC-15	Gila Gravity Main Canal					
00.10	Headworks	Medium	223	1,548	1.17	6.0%
GP-43	Granby Dam	High	484	2,854	1.16	5.9%
MP-32	Putah Diversion Dam	Medium	363	1,924	1.16	6.3%
UC-179	Taylor Park Dam	High	2,543	12,488	1.12	5.4%
00 /	Willwood Diversion			0.000		
GP-136	Dam	High	1,062	6,337	1.1	5.2%
GP-93	Pactola Dam	High	596	2,725	1.07	5.1%
UC-57	Heron Dam	Medium	2,701	8,874	1.06	4.9%
	Southside Canal, Sta 171+ 90 thru 200+ 67 (2					
UC-154	canal drops)	Low	2,026	6,557	1.05	4.8%
UC-148	South Canal, Sta. 472+00, "Site #5"	Medium	1,354	6,905	1.05	4.8%
PN-34	Emigrant Dam	High	733	2,619	0.99	4.3%

Table 6-3 Sites Analyzed with Benefit Cost Ratio (with Green Incentives) Greater than	
0.75	

Site ID	Site Name/Facility	Data Confidence Level	Installed Capacity (kW)	Annual Production (MWh)	Benefit Cost Ratio (with Green)	IRR (with Green)
UC-177	Syar Tunnel	Medium	1,762	7,982	0.99	4.3%
PN-104	Wickiup Dam	High	3,950	15,650	0.98	4.2%
UC-174	Sumner Dam	Medium	822	4,300	0.98	4.2%
GP-34	East Portal Diversion Dam	High	283	1,799	0.96	3.9%
PN-12	Cle Elum Dam	High	7,249	14,911	0.94	3.8%
PN-80 UC-155	Ririe Dam Southside Canal, Sta 349+ 05 thru 375+ 42 (3	High Low	<u>993</u> 1,651	3,778 5,344	0.94	3.8%
PN-87	canal drops)		955	3,683	0.93	3.7% 3.6%
UC-132	Scoggins Dam Rifle Gap Dam	High High	<u> </u>	1,740	0.92	3.5%
GP-5	Angostura Dam	Low	947	3,218	0.92	3.3%
MP-17	John Franchi Dam	Low	469	1,863	0.9	3.0%
GP-39	Fresno Dam	High	1,661	6,268	0.88	3.2%
GP-129	Virginia Smith Dam	Low	1,607	9,799	0.88	3.3%
PN-59	McKay Dam	High	1,362	4,344	0.88	3.2%
GP-128	Vandalia Diversion Dam	Medium	326	1,907	0.87	3.0%
PN-49	Keechelus Dam	High	2,394	6,746	0.87	3.0%
PN-44	Haystack	High	805	3,738	0.85	2.9%
UC-72	Joes Valley Dam	High	1,624	6,596	0.85	3.0%
UC-145	South Canal Tunnels	Medium	884	4,497	0.84	2.8%
MP-24	Marble Bluff Dam	High	1,153	5,624	0.83	2.8%
GP-92	Olympus Dam	High	284	1,549	0.82	2.3%
GP-117	St. Mary Canal - Drop 4	High	2,569	8,919	0.82	2.6%
GP-42	Glen Elder Dam	High	1,008	3,713	0.81	2.4%
UC-117	Paonia Dam	Medium	1,582	5,821	0.79	2.3%
PN-48	Kachess Dam	Medium	1,227	3,877	0.77	1.9%
GP-118	St. Mary Canal - Drop 5	High	1,901	7,586	0.75	1.8%

The site evaluation results are based on design flow and design head set at 30 percent exceedance level. Sections 5.7 and 5.8 include sensitivity analyses on varying the exceedance level for sites with benefit cost ratios close to or greater than 1 and sites with seasonal flows, which typically had a benefit cost ratio much lower than 1. For most sites that would be economical for hydropower development at the 30 percent exceedance level, the benefit cost ratio decreased at the 20 percent exceedance level, indicating that the costs of adding capacity were rising faster than the revenues (energy production) of the added capacity. For sites with seasonal flows, designing the plant at a lower exceedance level would slightly increase the benefit cost ratio relative to the 30 percent exceedance design because of increased revenues from more energy production, but the plant would continue to be uneconomical to develop (the benefit cost ratio remains less than 1).

The Resource Assessment consistently used a 30 percent exceedance, which resulted in more sites having higher benefit cost ratios. Using a 20 percent exceedance could have resulted in higher installed capacities and more energy generation, but the number of economically feasible projects, based on the benefit cost ratios, would decrease. During feasibility analysis of a potential site, the developer should analyze different plant sizes to evaluate the most economic plant size.

6.2 Conclusions

Recent national policies have focused on increasing domestic renewable energy development. Hydropower can be a relatively low cost clean energy source. The purposes of the Resource Assessment were to evaluate hydropower potential at existing Reclamation facilities and provide information on which sites may be the most economical for development purposes.

The Resource Assessment concludes that hydropower potential exists at select Reclamation facilities. Some site analyses are based on over 20 years of hydrologic data that indicate a high likelihood of generation capability. Table 6-3 presents 70 sites that could be economically feasible to develop, based on available data and study assumptions. Reclamation may not pursue or fund site development; however, opportunities may be available to private developers.

Power generation benefits, calculated using current and forecasted energy prices, indicate economic benefits from hydropower development could outweigh costs at many sites. The analysis also shows that Federal and few state green incentive programs are available to private developers financing a project. For Arizona, California, and Washington, state-sponsored green incentives can be a contributing factor in the economic viability of a project. For the remaining western states in Reclamation's regions, hydropower is not eligible for state renewable energy incentives; however, Federal incentives can be applicable for public municipalities or private developers. The sensitivity analysis on varying discount rates shows that project feasibility will be sensitive to changes in discount rates.

Constraints such as water supply, fish and wildlife considerations, and effects on Native Americans, water quality, and recreation have precluded development of additional hydropower in the past. Many of these constraints still exist. Sites with obvious constraints to development, such as a site location in a National Park, should not be further investigated, but some constraints may be accommodated by implementing mitigation. Although mitigation activities can be costly, power prices and financing options may make these sites worth further investigation.

Site-specific analysis is necessary if a site will be further pursued for hydropower potential. Because of the large geographic scope and extensive number of sites analyzed, the Resource Assessment could not go into great detail on physical and environmental features that may affect construction feasibility and development costs for each site. Some sites have particular physical features that may make construction difficult or more costly. For example, the Gunnison Tunnel is an open channel flow conduit, which may not be conducive to being converted to a pressurized penstock to serve a power plant. Some sites may also have additional environmental constraints related to fish habitat and passage not identified in this analysis. The Resource Assessment does not evaluate sites at this site-specific level of detail, which could affect the economic results presented in the analysis.

Despite its preliminary level of analysis, the Resource Assessment has provided valuable information on hydropower potential at existing Reclamation facilities to advance the objectives of the Federal MOU and help meet the nation's renewable energy development goals.

6.3 Potential Future Uses of Study Results

The results of the Resource Assessment will be of value to public municipalities and private developers seeking to add power to their load area or for investment purposes. It provides a valuable database in which potential sites can be viewed to help determine whether or not to proceed with a feasibility study. For many of these Reclamation sites, development would proceed under a Lease of Power Privilege Agreement as opposed to a FERC License. A lease of power privilege is a contractual right of up to 40 years given to a non-Federal entity to use a Reclamation facility for electric power generation. It is an alternative to federal power development where Reclamation has the authority to develop power on a federal project. The selection of a Lessee is done through a public process to ensure fair and open competition though preference is given through the Reclamation Project Act of 1939 to municipalities, other public corporations or agencies, and also to cooperatives and other nonprofit organizations financed through the Rural Electrification Act of 1936. In order to proceed under a lease, the project must have adequate design information, satisfactory environmental analysis/impacts, and cannot be detrimental to the existing project.

The results could also be used to support an incentive program for hydropower as a renewable energy source. A large number of projects fall in the gray area of being economically feasible. The Resource Assessment shows that green incentives for hydropower development are largely not available in individual states, but, when they are, can contribute substantially to the economic viability of a project. A Federal incentive program exists, but does not contribute significantly to economic benefits. Further, if sites are developed by Reclamation, they would not be eligible for the Federal incentive, but could qualify for state-sponsored incentives. This analysis could be useful in promoting hydropower at existing facilities as a low cost renewable energy source and determining incentives that would be necessary to stimulate investment.

The Hydropower Assessment Tool is a valuable tool for further analysis of these sites and new sites. The tool is user-friendly and allows simple adjustments if users have site specific information. Users can input new hydrologic data, change the exceedance level, turbine selected, and update costs, energy prices, constraints, green incentives, and/or the discount rate. The tool provides a valuable first step for understanding potential hydropower production at a site and if its benefits and costs warrant further investigation. This page intentionally left blank.

Chapter 7 References

Canyon Hydro, LLC. 2010. Generic Pelton Turbine Efficiency Curve as Developed Internally.

Idaho National Engineering and Environmental Laboratory. 2003. Estimation of Economic Parameters of U.S. Hydropower Resource. Prepared for the U.S. Department of Energy, Contract DE-AC07-99ID13727.

North Carolina Solar Center and Interstate Renewable Energy Council (IREC). 1995. Database of State Incentives for Renewables and Efficiency (DSIRE). http://www.dsireusa.org/

Northwest Power and Conservation Council. 2010. Sixth Northwest Conservation and Electric Power Plan. http://www.nwcouncil.org/energy/powerplan/6/default.htm

U.S. Bureau of Reclamation. Hydromet Great Plains <u>http://www.usbr.gov/gp/hydromet/</u>

U.S. Bureau of Reclamation. Hydromet Pacific Northwest. <u>http://www.usbr.gov/pn/hydromet/</u>

U.S. Bureau of Reclamation. Quarterly Construction Cost Indices.

U.S. Bureau of Reclamation. 1976. Selecting Hydraulic Reaction Turbines-Engineering Monograph No. 20.

U.S. Department of the Interior, U.S. Department of the Army and U.S. Department of Energy. 2007. Potential Hydroelectric Development at Existing Federal Facilities for Section 1834 of the Energy Policy Act of 2005

U.S. Department of the Interior. 1981. Water and Power Resources Service-Project Data

U.S. Geologic Survey. Water Data for the Nation. http://waterdata.usgs.gov/nwis/rt This page intentionally left blank.

Appendix A Site Identification

The Resource Assessment reevaluates potential hydropower development at the 530 Reclamation-owned facilities inventoried in the 1834 Study. Table A-1 summarizes the number of sites in each Reclamation region. Sites were initially identified in the 1834 Study; no new sites were added for this analysis. For analysis purposes, each site is labeled with the region initials and a number, based on alphabetical order of the sites in the region. Table A-2 lists the sites, state, Reclamation project, and assigned site identification numbers. These site identification numbers are carried through the entire report.

Reclamation Region	Number of Sites	Site Identification Numbering
Great Plains (GP)	146	GP-1 to GP-146
Lower Colorado (LC)	30	LC-1 to LC-30
Mid-Pacific (MP)	44	MP-1 to MP-44
Pacific Northwest (PN)	105	PN-1 to PN-105
Upper Colorado (UC)	205	UC-1 to UC-205

Table A-1 Number of Sites in Each Reclamation Region

Table A-2	Site Identification	Inventory
-----------	---------------------	-----------

Site ID	Site Name	State	Project
	A-Drop Project, Greenfield Main		
GP-1	Canal Drop	Montana	Sun River
GP-2	Almena Diversion Dam	Kansas	PSMBP - Almena
GP-3	Altus Dam	Oklahoma	W.C. Austin
GP-4	Anchor Dam	Wyoming	PSMBP - Owl Creek
GP-5	Angostura Dam	South Dakota	PSMBP - Cheyenne Diversion
GP-6	Anita Dam	Montana	Huntley
GP-7	Arbuckle Dam	Oklahoma	Arbuckle
GP-8	Barretts Diversion Dam	Montana	PSMBP - East Bench
GP-9	Bartley Diversion Dam	Nebraska	PSMBP - Frenchman- Cambridge
GP-10	Belle Fourche Dam	South Dakota	Belle Fourche
GP-11	Belle Fourche Diversion Dam	South Dakota	Belle Fourche
GP-12	Bonny Dam	Colorado	PSMBP - Armel
GP-13	Box Butte Dam	Nebraska	Mirage Flats
GP-14	Bretch Diversion Canal	Oklahoma	Mountain Park
GP-15	Bull Lake Dam	Wyoming	PSMBP - Riverton
GP-16	Cambridge Diversion Dam	Nebraska	PSMBP - Frenchman- Cambridge
GP-17	Carter Creek Diversion Dam	Colorado	Fryingpan-Arkansas
GP-18	Carter Lake Dam No. 1	Colorado	Colorado-Big Thompson

Site ID	Site Name	State	Project
GP-19	Cedar Bluff Dam	Kansas	PSMBP - Cedar Bluff
GP-20	Chapman Diversion Dam	Colorado	Fryingpan-Arkansas
GP-21	Cheney Dam	Kansas	Wichita
GP-22	Choke Canyon Dam	Texas	Nueces River
GP-23	Clark Canyon Dam	Montana	PSMBP - East Bench
GP-24	Corbett Diversion Dam	Wyoming	Shoshone
GP-25	Culbertson Diversion Dam	Nebraska	PSMBP - Frenchman- Cambridge
GP-26	Davis Creek Dam	Nebraska	PSMBP - North Loup
GP-27	Deaver Dam	Wyoming	Shoshone
GP-28	Deerfield Dam	South Dakota	Rapid Valley
GP-29	Dickinson Dam	North Dakota	PSMBP - Dickinson
GP-30	Dixon Canyon Dam	Colorado	Colorado-Big Thompson
GP-31	Dodson Diversion Dam	Montana	Milk River
GP-32	Dry Spotted Tail Diversion Dam	Nebraska	North Platte
GP-33	Dunlap Diversion Dam	Nebraska	Mirage Flats
GP-34	East Portal Diversion Dam	Colorado	Colorado-Big Thompson
GP-35	Enders Dam	Nebraska	PSMBP - Frenchman- Cambridge
GP-36	Fort Cobb Dam	Oklahoma	Washita Basin
GP-37	Fort Shaw Diversion Dam	Montana	Sun River
GP-38	Foss Dam	Oklahoma	Washita Basin
GP-39	Fresno Dam	Montana	Milk River
GP-40	Fryingpan Diversion Dam	Colorado	Fryingpan-Arkansas
GP-41	Gibson Dam	Montana	Sun River
GP-42	Glen Elder Dam	Kansas	PSMBP Glen Elder Unit
GP-43	Granby Dam	Colorado	Colorado-Big Thompson
GP-44	Granby Dikes 1-4	Colorado	Colorado-Big Thompson
GP-45	Granite Creek Diversion Dam	Colorado	Fryingpan-Arkansas
GP-46	Gray Reef Dam	Wyoming	PSMBP - Glendo
	Greenfield Project, Greenfield Main		
GP-47	Canal Drop	Montana	Sun River
GP-48	Halfmoon Creek Diversion Dam	Colorado	Fryingpan-Arkansas
GP-49	Hanover Diversion Dam	Wyoming	PSMBP - Hanover-Bluff
GP-50	Heart Butte Dam	North Dakota	PSMBP - Heart Butte
GP-51	Helena Valley Dam	Montana	PSMBP - Helena Valley
GP-52	Helena Valley Pumping Plant	Montana	PSMBP - Helena Valley
GP-53	Horse Creek Diversion Dam	Wyoming	North Platte
GP-54	Horsetooth Dam	Colorado	Colorado-Big Thompson
GP-55	Hunter Creek Diversion Dam	Colorado	Fryingpan-Arkansas
GP-56	Huntley Diversion Dam	Montana	Huntley
GP-57	Ivanhoe Diversion Dam	Colorado	Fryingpan-Arkansas
GP-58	James Diversion Dam	South Dakota	PSMBP - James Diversion
GP-59	Jamestown Dam	North Dakota	PSMBP - Jamestown Dam
GP-60	Johnson Project, Greenfield Main Canal Drop	Montana	Sun River
GP-61	Kent Diversion Dam	Nebraska	PSMBP - North Loup

Table A-2 Site Identification Inventory

Site ID	Site Name	State	Project
GP-62	Keyhole Dam	Wyoming	PSMBP - Cheyenne Diversion
GP-63	Kirwin Dam	Kansas	PSMBP - Kirwin
GP-64	Knights Project, Greenfield Main Canal Drop	Montana	Sun River
GP-65	Lake Alice Lower 1-1/2 Dam	Nebraska	North Platte
GP-66	Lake Alice No. 1 Dam	Nebraska	North Platte
GP-67	Lake Alice No. 2 Dam	Nebraska	North Platte
GP-68	Lake Sherburne Dam	Montana	Milk River
GP-69	Lily Pad Diversion Dam	Colorado	Fryingpan-Arkansas
GP-70	Little Hell Creek Diversion Dam	Colorado	Colorado-Big Thompson
GP-71	Lovewell Dam	Kansas	PSMBP - Bostwick
GP-72	Lower Turnbull Drop Structure	Montana	Sun River
GP-73	Lower Yellowstone Diversion Dam	Montana	Lower Yellowstone
GP-74	Mary Taylor Drop Structure	Montana	Sun River
GP-75	Medicine Creek Dam	Nebraska	PSMBP - Frenchman- Cambridge
GP-76	Merritt Dam	Nebraska	PSMBP Ainsworth Unit
GP-77	Merritt Dam	Nebraska	PSMBP Ainsworth Unit
GP-78	Middle Cunningham Creek Diversion Dam	Colorado	Fryingpan-Arkansas
GP-79	Midway Creek Diversion Dam	Colorado	Fryingpan-Arkansas
GP-80	Mill Coulee Canal Drop, Upper and Lower Drops Combined	Montana	Sun River
GP-81	Minatare Dam	Nebraska	North Platte
GP-82	Mormon Creek Diversion Dam	Colorado	Fryingpan-Arkansas
GP-83	Mountain Park Dam	Oklahoma	Mountain Park
GP-84	Nelson Dikes C	Montana	Milk River
GP-85	Nelson Dikes DA	Montana	Milk River
GP-86	No Name Creek Diversion Dam	Colorado	Fryingpan-Arkansas
GP-87	Norman Dam	Oklahoma	Norman
	North Cunningham Creek		
GP-88	Diversion Dam	Colorado	Fryingpan-Arkansas
GP-89	North Fork Diversion Dam	Colorado	Fryingpan-Arkansas
GP-90	North Poudre Diversion Dam	Colorado	Colorado-Big Thompson
GP-91	Norton Dam	Kansas	PSMBP - Almena
GP-92	Olympus Dam	Colorado	Colorado-Big Thompson
GP-93	Pactola Dam	South Dakota	PSMBP - Rapid Valley
GP-94	Paradise Diversion Dam	Montana	Milk River
GP-95	Pathfinder Dam	Wyoming	North Platte
GP-96	Pathfinder Dike	Wyoming	North Platte
GP-97	Pilot Butte Dam	Wyoming	PSMBP - Riverton
GP-98	Pishkun Dike - No. 4	Montana	Sun River
GP-99	Pueblo Dam	Colorado	Fryingpan-Arkansas
GP-100	Ralston Dam	Wyoming	Shoshone
GP-101	Rattlesnake Dam	Colorado	Colorado-Big Thompson
GP-102	Red Willow Dam	Nebraska	PSMBP - Frenchman- Cambridge

Table A-2 Site Identification Inventory

GP-104SanfordGP-105SatankaGP-106SawyerGP-107ShadehiGP-108ShadowGP-109Soldier (CGP-109Soldier (CGP-110DiversionGP-111South CGP-112DiversionGP-113Spring (CGP-114St. MaryGP-115St. MaryGP-116St. MaryGP-117St. MaryGP-118St. MaryGP-119St. VrainGP-120Sun RiveGP-121SuperiorGP-123TrentonGP-124Tub SpringGP-125Twin ButGP-126Twin Lal	Dike Creek Diversion Dam II Dam Mountain Dam Canyon Dam unningham Creek n Dam ork Diversion Dam latte Supply Canal n Dam Canal - Drop 1 Canal - Drop 1 Canal - Drop 2 Canal - Drop 3 Canal - Drop 3 Canal - Drop 4 Canal - Drop 5 Canal - Drop 5 Canal Canal - Drop 5 Canal Canal - Drop 5 Canal Canal - Drop 5 Canal Canal Canal - Drop 5 Canal Cana Cana	StateMontanaTexasColoradoColoradoSouth DakotaColoradoColoradoColoradoColoradoColoradoColoradoColoradoColoradoMontanaMontanaMontanaMontanaMontanaMontanaMontanaMontanaMontanaMontanaMontanaNontanaNontanaNebraska	ProjectMilk RiverCanadian RiverColorado-Big ThompsonFryingpan-ArkansasPSMBP - ShadehillColorado-Big ThompsonColorado-Big ThompsonColorado-Big ThompsonFryingpan-ArkansasFryingpan-ArkansasColorado-Big ThompsonColorado-Big ThompsonMilk RiverMilk RiverMilk RiverMilk RiverMilk RiverMilk RiverSun RiverSun River
GP-104SanfordGP-105SatankaGP-106SawyerGP-107ShadehiGP-108ShadowGP-109Soldier (CGP-109Soldier (CGP-110DiversionGP-111South CGP-112DiversionGP-113Spring (CGP-114St. MaryGP-115St. MaryGP-116St. MaryGP-117St. MaryGP-118St. MaryGP-119St. VrainGP-120Sun RiveGP-121SuperiorGP-123TrentonGP-124Tub SpringGP-125Twin ButGP-126Twin Lal	Dam Dike Creek Diversion Dam II Dam Mountain Dam Canyon Dam unningham Creek n Dam ork Diversion Dam latte Supply Canal n Dam Canal - Drop 1 Canal - Drop 1 Canal - Drop 2 Canal - Drop 3 Canal - Drop 3 Canal - Drop 4 Canal - Drop 5 Canal - Drop 5 Canal canal corp 5 Canal corp 1 Canal corp 5 Canal corp 5 Corp 7 Corp 7 Corp 7 Canal corp 5 Corp 7 Corp	Texas Colorado Colorado South Dakota Colorado Colorado Colorado Colorado Colorado Colorado Montana Montana Montana Montana Montana Colorado Montana	Canadian River Colorado-Big Thompson Fryingpan-Arkansas PSMBP - Shadehill Colorado-Big Thompson Colorado-Big Thompson Colorado-Big Thompson Fryingpan-Arkansas Fryingpan-Arkansas Colorado-Big Thompson Colorado-Big Thompson Colorado-Big Thompson Colorado-Big Thompson Milk River Milk River Milk River Milk River Milk River Milk River Sun River
GP-105SatankaGP-106SawyerGP-107ShadehiGP-108ShadowGP-109Soldier GSouth CSouth CGP-110DiversionGP-111South FGGP-112DiversionGP-113Spring CGP-114St. MaryGP-115St. MaryGP-116St. MaryGP-117St. MaryGP-118St. MaryGP-119St. VrainGP-120Sun RiveGP-121SuperiorGP-123TrentonGP-124Tub SpringGP-125Twin ButGP-126Twin Lal	Dike Creek Diversion Dam II Dam Mountain Dam Canyon Dam unningham Creek n Dam ork Diversion Dam latte Supply Canal n Dam Canal - Drop 1 Canal - Drop 1 Canal - Drop 2 Canal - Drop 3 Canal - Drop 3 Canal - Drop 4 Canal - Drop 5 Canal - Drop 5 Canal Canal - Drop 5 Canal Canal - Drop 5 Canal Canal - Drop 5 Canal Canal Canal - Drop 5 Canal Cana Cana	Colorado Colorado South Dakota Colorado Colorado Colorado Colorado Colorado Colorado Montana Montana Montana Montana Montana Colorado Montana	Colorado-Big Thompson Fryingpan-Arkansas PSMBP - Shadehill Colorado-Big Thompson Colorado-Big Thompson Fryingpan-Arkansas Fryingpan-Arkansas Colorado-Big Thompson Colorado-Big Thompson Colorado-Big Thompson Colorado-Big Thompson Colorado-Big Thompson Milk River Milk River Milk River Milk River Milk River Milk River Sun River
GP-106SawyerGP-107ShadehiGP-108ShadowGP-109Soldier GSouth CSouth CGP-110DiversionGP-111South FeSouth CDiversionGP-112DiversionGP-113Spring CGP-114St. MaryGP-115St. MaryGP-116St. MaryGP-117St. MaryGP-118St. MaryGP-119St. VrainGP-120Sun RiveGP-121SuperiorGP-123TrentonGP-124Tub SpriGP-125Twin ButGP-126Twin Lal	Creek Diversion Dam II Dam Mountain Dam Canyon Dam unningham Creek n Dam ork Diversion Dam latte Supply Canal n Dam Canal - Drop 1 Canal - Drop 2 Canal - Drop 3 Canal - Drop 3 Canal - Drop 4 Canal - Drop 5 n Canal er Diversion Dam Courtland Diversion Dam	Colorado South Dakota Colorado Colorado Colorado Colorado Colorado Colorado Montana Montana Montana Montana Montana Colorado Montana	Fryingpan-Arkansas PSMBP - Shadehill Colorado-Big Thompson Colorado-Big Thompson Fryingpan-Arkansas Fryingpan-Arkansas Colorado-Big Thompson Colorado-Big Thompson Colorado-Big Thompson Colorado-Big Thompson Milk River Sun River
GP-107ShadehiGP-108ShadowGP-109Soldier (GGP-110DiversionGP-111South CGP-112DiversionGP-113Spring CGP-114St. MaryGP-115St. MaryGP-116St. MaryGP-117St. MaryGP-118St. MaryGP-119St. VrainGP-120Sun RiveGP-121SuperiorGP-123TrentonGP-124Tub SpriGP-125Twin ButGP-126Twin Lal	II Dam Mountain Dam Canyon Dam unningham Creek n Dam ork Diversion Dam latte Supply Canal n Dam Canal - Drop 1 Canal - Drop 1 Canal - Drop 2 Canal - Drop 3 Canal - Drop 4 Canal - Drop 5 n Canal er Diversion Dam Courtland Diversion Dam	South Dakota Colorado Colorado Colorado Colorado Colorado Colorado Montana Montana Montana Montana Montana Colorado Montana	PSMBP - Shadehill Colorado-Big Thompson Colorado-Big Thompson Fryingpan-Arkansas Fryingpan-Arkansas Colorado-Big Thompson Colorado-Big Thompson Colorado-Big Thompson Colorado-Big Thompson Milk River Milk River Milk River Milk River Milk River Milk River Sun River
GP-108ShadowGP-109Soldier (South C DiversionGP-110DiversionGP-111South P DiversionGP-112DiversionGP-113Spring C GP-114GP-114St. MaryGP-115St. MaryGP-116St. MaryGP-117St. MaryGP-118St. MaryGP-119St. VrainGP-120Sun RiveGP-121SuperiorGP-123TrentonGP-124Tub SpringGP-125Twin ButGP-126Twin Lal	Mountain Dam Canyon Dam unningham Creek n Dam ork Diversion Dam latte Supply Canal n Dam Canyon Dam Canal - Drop 1 Canal - Drop 2 Canal - Drop 3 Canal - Drop 3 Canal - Drop 4 Canal - Drop 5 Canal - Drop 5 Canal canal - Drop 5 Canal - Courtland Diversion Dam	Colorado Colorado Colorado Colorado Colorado Colorado Montana Montana Montana Montana Montana Colorado Montana	Colorado-Big Thompson Colorado-Big Thompson Fryingpan-Arkansas Fryingpan-Arkansas Colorado-Big Thompson Colorado-Big Thompson Milk River Milk River Milk River Milk River Milk River Milk River Sun River
GP-109Soldier GGP-110South CGP-111South PGP-112DiversionGP-113Spring CGP-114St. MaryGP-115St. MaryGP-116St. MaryGP-117St. MaryGP-118St. MaryGP-119St. VrainGP-120Sun RiveGP-121SuperiorGP-123TrentonGP-124Tub SpringGP-125Twin ButGP-126Twin Lal	Canyon Dam unningham Creek n Dam ork Diversion Dam latte Supply Canal n Dam Canyon Dam Canal - Drop 1 Canal - Drop 2 Canal - Drop 3 Canal - Drop 4 Canal - Drop 5 n Canal er Diversion Dam -Courtland Diversion Dam	Colorado Colorado Colorado Colorado Montana Montana Montana Montana Montana Colorado Montana	Colorado-Big Thompson Fryingpan-Arkansas Fryingpan-Arkansas Colorado-Big Thompson Colorado-Big Thompson Milk River Milk River Milk River Milk River Milk River Milk River Colorado-Big Thompson Sun River
GP-110South CGP-111South FGP-111South PGP-112DiversionGP-113Spring CGP-114St. MaryGP-115St. MaryGP-116St. MaryGP-117St. MaryGP-118St. MaryGP-119St. VrainGP-120Sun RiveGP-121SuperiorGP-123TrentonGP-124Tub SpriGP-125Twin ButGP-126Twin Lal	unningham Creek n Dam ork Diversion Dam latte Supply Canal n Dam Canyon Dam Canal - Drop 1 Canal - Drop 2 Canal - Drop 3 Canal - Drop 3 Canal - Drop 4 Canal - Drop 5 n Canal er Diversion Dam C-Courtland Diversion Dam	Colorado Colorado Colorado Colorado Montana Montana Montana Montana Colorado Montana	Fryingpan-Arkansas Fryingpan-Arkansas Colorado-Big Thompson Colorado-Big Thompson Milk River Sun River
GP-110DiversionGP-111South FrSouth PISouth PIGP-112DiversionGP-113Spring CGP-114St. MaryGP-115St. MaryGP-116St. MaryGP-117St. MaryGP-118St. MaryGP-119St. VrainGP-120Sun RiveGP-121SuperiorGP-122TrentonGP-123TrentonGP-124Tub SpriGP-125Twin ButGP-126Twin Lal	n Dam ork Diversion Dam latte Supply Canal n Dam Canyon Dam Canal - Drop 1 Canal - Drop 2 Canal - Drop 3 Canal - Drop 4 Canal - Drop 5 Canal - Drop 5 Canal canal er Diversion Dam -Courtland Diversion Dam	Colorado Colorado Montana Montana Montana Montana Montana Colorado Montana	Fryingpan-Arkansas Colorado-Big Thompson Colorado-Big Thompson Milk River Milk River Milk River Milk River Milk River Milk River Colorado-Big Thompson Sun River
GP-111South For South PIGP-112DiversionGP-113Spring CGP-114St. MaryGP-115St. MaryGP-116St. MaryGP-117St. MaryGP-118St. MaryGP-119St. VrainGP-120Sun RiveGP-121SuperiorGP-123TrentonGP-124Tub SpriGP-125Twin ButGP-126Twin Lal	ork Diversion Dam latte Supply Canal n Dam Canyon Dam 7 Canal - Drop 1 7 Canal - Drop 2 7 Canal - Drop 3 7 Canal - Drop 3 7 Canal - Drop 4 7 Canal - Drop 5 8 Canal 9	Colorado Colorado Montana Montana Montana Montana Montana Colorado Montana	Fryingpan-Arkansas Colorado-Big Thompson Colorado-Big Thompson Milk River Milk River Milk River Milk River Milk River Milk River Colorado-Big Thompson Sun River
GP-112South PlGP-113Spring CGP-114St. MaryGP-115St. MaryGP-116St. MaryGP-117St. MaryGP-118St. MaryGP-119St. MaryGP-119St. VrainGP-120Sun RiveGP-121SuperiorGP-122TrentonGP-123TrentonGP-124Tub SpriGP-125Twin ButGP-126Twin Lal	latte Supply Canal n Dam Canyon Dam Canal - Drop 1 Canal - Drop 2 Canal - Drop 3 Canal - Drop 4 Canal - Drop 5 Canal - Drop 5 Canal - Canal er Diversion Dam C-Courtland Diversion Dam	Colorado Colorado Montana Montana Montana Montana Colorado Montana	Colorado-Big Thompson Colorado-Big Thompson Milk River Milk River Milk River Milk River Milk River Milk River Colorado-Big Thompson Sun River
GP-112DiversionGP-113Spring CGP-114St. MaryGP-115St. MaryGP-116St. MaryGP-117St. MaryGP-118St. MaryGP-119St. VrainGP-120Sun RiveGP-121SuperiorGP-122TrentonGP-123TrentonGP-124Tub SpriGP-125Twin ButGP-126Twin Lal	n Dam Canyon Dam Canal - Drop 1 Canal - Drop 2 Canal - Drop 3 Canal - Drop 4 Canal - Drop 5 Canal - Drop 5 Canal - Correstion Dam	Colorado Montana Montana Montana Montana Colorado Montana	Colorado-Big Thompson Milk River Milk River Milk River Milk River Milk River Colorado-Big Thompson Sun River
GP-113Spring CGP-114St. MaryGP-115St. MaryGP-116St. MaryGP-117St. MaryGP-118St. MaryGP-119St. VrainGP-120Sun RiveGP-121SuperiorGP-122TrentonGP-123TrentonGP-124Tub SpriGP-125Twin ButGP-126Twin Lab	Canyon Dam Canal - Drop 1 Canal - Drop 2 Canal - Drop 3 Canal - Drop 4 Canal - Drop 5 Canal - Drop 5 Canal Correstion Canal Correstion Canal Correstion Canal Correstion Canal Correstion Canal Correstion Canal Correstion Cana	Colorado Montana Montana Montana Montana Colorado Montana	Colorado-Big Thompson Milk River Milk River Milk River Milk River Milk River Colorado-Big Thompson Sun River
GP-114 St. Mary GP-115 St. Mary GP-116 St. Mary GP-117 St. Mary GP-118 St. Mary GP-119 St. Mary GP-118 St. Mary GP-119 St. Vrain GP-120 Sun Rive GP-121 Superior GP-122 Trenton GP-123 Trenton GP-124 Tub Spri GP-125 Twin But GP-126 Twin Lak	Canal - Drop 1 Canal - Drop 2 Canal - Drop 3 Canal - Drop 4 Canal - Drop 5 Canal - Drop 5 Canal - Drop 5 Canal - Drop 5 Canal - Drop 5 Canal - Drop 5	Montana Montana Montana Montana Colorado Montana	Milk River Milk River Milk River Milk River Milk River Colorado-Big Thompson Sun River
GP-115St. MaryGP-116St. MaryGP-117St. MaryGP-118St. MaryGP-119St. VrainGP-120Sun RiveGP-121SuperiorGP-122TrentonGP-123TrentonGP-124Tub SpriGP-125Twin ButGP-126Twin Lab	Canal - Drop 2 Canal - Drop 3 Canal - Drop 4 Canal - Drop 5 Canal Canal - Drop 5 Canal - Canal - Canal - Canal - Courtland Diversion Dam	Montana Montana Montana Colorado Montana	Milk River Milk River Milk River Milk River Colorado-Big Thompson Sun River
GP-116St. MaryGP-117St. MaryGP-118St. MaryGP-119St. VrainGP-120Sun RiveGP-121SuperiorGP-122TrentonGP-123TrentonGP-124Tub SpriGP-125Twin ButGP-126Twin Lab	Canal - Drop 3 Canal - Drop 4 Canal - Drop 5 Canal Canal er Diversion Dam -Courtland Diversion Dam	Montana Montana Montana Colorado Montana	Milk River Milk River Milk River Colorado-Big Thompson Sun River
GP-117St. MaryGP-118St. MaryGP-119St. VrainGP-120Sun RiveGP-121SuperiorGP-122TrentonGP-123TrentonGP-124Tub SpriGP-125Twin ButGP-126Twin Lab	Canal - Drop 4 Canal - Drop 5 Canal canal er Diversion Dam -Courtland Diversion Dam	Montana Montana Colorado Montana	Milk River Milk River Colorado-Big Thompson Sun River
GP-118St. MaryGP-119St. VrainGP-120Sun RiveGP-121SuperiorGP-122TrentonGP-123TrentonGP-124Tub SpriGP-125Twin ButGP-126Twin Lab	Canal - Drop 5 Canal er Diversion Dam -Courtland Diversion Dam	Montana Colorado Montana	Milk River Colorado-Big Thompson Sun River
GP-119St. VrainGP-120Sun RiveGP-121SuperiorGP-122TrentonGP-123TrentonGP-124Tub SpriGP-125Twin ButGP-126Twin Lab	er Diversion Dam -Courtland Diversion Dam	Colorado Montana	Colorado-Big Thompson Sun River
GP-120Sun RiveGP-121SuperiorGP-122TrentonGP-123TrentonGP-124Tub SpriGP-125Twin ButGP-126Twin Lab	er Diversion Dam -Courtland Diversion Dam	Montana	Sun River
GP-121SuperiorGP-122TrentonGP-123TrentonGP-124Tub SpriGP-125Twin ButGP-126Twin Lab	r-Courtland Diversion Dam		
GP-122TrentonGP-123TrentonGP-124Tub SpriGP-125Twin ButGP-126Twin Lab		Nehraska	
GP-123TrentonGP-124Tub SpriGP-125Twin ButGP-126Twin Lab	Dam		PSMBP - Bostwick
GP-124Tub SpriGP-125Twin ButGP-126Twin Lab		Nebraska	PSMBP Cambridge Unit
GP-125 Twin But GP-126 Twin Lak		Nebraska	PSMBP Cambridge Unit
GP-126 Twin Lak	ings Creek Diversion Dam	Nebraska	North Platte
		Texas	San Angelo
	kes Dam (USBR)	Colorado	Fryingpan-Arkansas
	urnbull Drop Structure	Montana	Sun River
	a Diversion Dam	Montana	Milk River
	Smith Dam	Nebraska	PSMBP - North Loup
GP-130 Webster		Kansas	PSMBP - Webster
	Diversion Dam	Wyoming	North Platte
	Creek Dam	Colorado	Colorado-Big Thompson
	Creek Dam (MT)	Montana	Sun River
	Creek Forebay Diversion	Colorado	Colorada Dia Thomasan
GP-134 Dam	d Canal	Colorado	Colorado-Big Thompson
GP-135 Willwood		Wyoming	Shoshone
	d Diversion Dam	Wyoming	Shoshone
	ver Diversion Dam	Wyoming	PSMBP - Riverton
GP-138 Canal D	Project, Greenfield Main	Montana	Sun River
	on Diversion Dam	Kansas	PSMBP - Webster
	g Canal - Sta 1016	Wyoming	PSMBP - Riverton
	g Canal - Sta 1490	Wyoming	PSMBP - Riverton
	g Canal - Sta 1520	Wyoming	PSMBP - Riverton
	g Canal - Sta 1626	Wyoming	PSMBP - Riverton
	g Canal - Sta 1972	Wyoming	PSMBP - Riverton
GP-145 Wyomin	d Canal - Sta 1977	Wyoming	PSMBP - Riverton

Table A-2 Site Identification Inventory

Site ID	Site Name	State	Project
GP-146	Yellowtail Afterbay Dam	Montana	PSMBP - Yellowtail
LC-1	Agua Fria River Siphon	Arizona	Central Arizona Project
LC-2	Agua Fria Tunnel	Arizona	Central Arizona Project
LC-3	All American Canal	California	Boulder Canyon Project
LC-4	All American Canal Headworks	California	Boulder Canyon Project
LC-5	Arizona Canal	Arizona	Salt River Project
LC-6	Bartlett Dam	Arizona	Salt River Project
LC-7	Buckskin Mountain Tunnel	Arizona	Central Arizona Project
LC-8	Burnt Mountain Tunnel	Arizona	Central Arizona Project
LC-9	Centennial Wash Siphon	Arizona	Central Arizona Project
LC-10	Coachella Canal	California	Boulder Canyon Project
LC-11	Consolidated Canal	Arizona	Salt River Project
LC-12	Cross Cut Canal	Arizona	Salt River Project
LC-13	Cunningham Wash Siphon	Arizona	Central Arizona Project
LC-14	Eastern Canal	Arizona	Salt River Project
LC-15	Gila Gravity Main Canal Headworks	Arizona	Central Arizona Project
LC-16	Gila River Siphon	Arizona	Central Arizona Project
LC-17	Grand Canal	Arizona	Salt River Project
LC-18	Granite Reef Diversion Dam	Arizona-California	Boulder Canyon Project
LC-19	Hassayampa River Siphon	Arizona	Central Arizona Project
LC-20	Horseshoe Dam	Arizona	Salt River Project
LC-21	Imperial Dam	Arizona-California	Boulder Canyon Project
LC-22	Interstate Highway Siphon	Arizona	Central Arizona Project
LC-23	Jackrabbit Wash Siphon	Arizona	Central Arizona Project
LC-24	Laguna Dam	Arizona-California	Yuma Project
LC-25	New River Siphon	Arizona	Central Arizona Project
LC-26	Palo Verde Diversion Dam	Arizona-California	Palo Verde Diversion Project
LC-27	Reach 11 Dike	Arizona	Central Arizona Project
LC-28	Salt River Siphon Blowoff	Arizona	Central Arizona Project
LC-29	Tempe Canal	Arizona	Salt River Project
LC-30	Western Canal	Arizona	Salt River Project
MP-1	Anderson-Rose Dam	Oregon	Klamath
MP-2	Boca Dam	California	Truckee Storage
MP-3	Bradbury Dam	California	Cachuma
MP-4	Buckhorn Dam (Reclamation)	California	Central Valley
MP-5	Camp Creek Dam	California	Central Valley
MP-6	Carpenteria	California	Cachuma
MP-7	Carson River Dam	Nevada	Newlands
MP-8	Casitas Dam	California	Ventura River
MP-9	Clear Lake Dam	California	Klamath
MP-10	Contra Loma Dam	California	Central Valley
MP-11	Derby Dam	Nevada	Newlands
MP-12	Dressler Dam	Nevada	Washoe
MP-13	East Park Dam	California	Orland
MP-14	Funks Dam	California	Central Valley
MP-15	Gerber Dam	Oregon	Klamath

Table A-2 Site Identification Inventory

Site ID	Site Name	State	Project
MP-16	Glen Anne Dam	California	Cachuma
MP-17	John Franchi Dam	California	Central Valley
MP-18	Lake Tahoe Dam	California	Newlands
MP-19	Lauro Dam	California	Cachuma
MP-20	Little Panoche Detention Dam	California	Central Valley
MP-21	Los Banos Creek Detention Dam	California	Central Valley
MP-22	Lost River Diversion Dam	Oregon	Klamath
MP-23	Malone Diversion Dam	Oregon	Klamath
MP-24	Marble Bluff Dam	Nevada	Washoe
MP-25	Martinez Dam	California	Central Valley
MP-26	Miller Dam	Oregon	Klamath
MP-27	Mormon Island Auxiliary Dike	California	Central Valley
MP-28	Northside	California	Orland
MP-29	Ortega	California	Cachuma
MP-30	Prosser Creek Dam	California	Washoe
MP-31	Putah Creek Dam	California	Solano
MP-32	Putah Diversion Dam	California	Solano
MP-33	Rainbow Dam	California	Orland
MP-34	Red Bluff Dam	California	Central Valley
MP-35	Robles Dam	California	Ventura River
MP-36	Rye Patch Dam	Nevada	Humboldt
MP-37	San Justo Dam	California	Central Valley
MP-38	Sheckler Dam	Nevada	Newlands
MP-39	Sly Park Dam	California	Central Valley
MP-40	Spring Creek Debris Dam	California	Central Valley
MP-41	Sugar Pine	California	Central Valley
MP-42	Terminal Dam	California	Solano
MP-43	Twitchell Dam	California	Santa Maria
MP-44	Upper Slaven Dam	Nevada	Humboldt
PN-1	Agate	Oregon	Rogue River Basin
PN-2	Agency Valley	Oregon	Vale
PN-3	Antelope Creek	Oregon	Rogue River Basin
PN-4	Arnold	Oregon	Deschutes
PN-5	Arrowrock	Idaho	Boise
PN-6	Arthur R. Bowman Dam	Oregon	Crooked River
PN-7	Ashland Lateral	Oregon	Rogue River Basin
PN-8	Beaver Dam Creek	Oregon	Rogue River Basin
PN-9	Bully Creek	Oregon	Vale
PN-10	Bumping Lake	Washington	Yakima
PN-11	Cascade Creek	Idaho	Minidoka
PN-12	Cle Elum Dam	Washington	Yakima
PN-13	Clear Creek	Washington	Yakima
PN-14	Col W.W. No 4	Washington	Columbia Basin
PN-15	Cold Springs	Oregon	Umatilla
PN-16	Conconully	Washington	Okanogan
PN-17	Conde Creek	Oregon	Rogue River Basin

Table A-2 Site Identification Inventory

Site ID	Site Name	State	Project
PN-18	Cowiche	Washington	Yakima
PN-19	Crab Creek Lateral #4	Washington	Columbia Basin
PN-20	Crane Prairie	Oregon	Deschutes
PN-21	Cross Cut	Idaho	Minidoka
PN-22	Daley Creek	Oregon	Rogue River Basin
PN-23	Dead Indian	Oregon	Rogue River Basin
PN-24	Deadwood Dam	Idaho	Boise
PN-25	Deer Flat East Dike	Idaho	Boise
PN-26	Deer Flat Middle	Idaho	Boise
PN-27	Deer Flat North Lower	Idaho	Boise
PN-28	Deer Flat Upper	Idaho	Boise
PN-29	Diversion Canal Headworks	Oregon	Crooked River
PN-30	Dry Falls - Main Canal Headworks	Washington	Columbia Basin
PN-31	Easton Diversion Dam	Washington	Yakima
PN-32	Eltopia Branch Canal	Washington	Columbia Basin
PN-33	Eltopia Branch Canal 4.6	Washington	Columbia Basin
PN-34	Emigrant	Oregon	Rogue River Basin
PN-35	Esquatzel Canal	Washington	Columbia Basin
PN-36	Feed Canal	Oregon	Umatilla
PN-37	Fish Lake	Oregon	Rogue River Basin
PN-38	Fourmile Lake	Oregon	Rogue River Basin
PN-39	French Canyon	Washington	Yakima
PN-40	Frenchtown	Montana	Frenchtown
PN-41	Golden Gate Canal	Idaho	Boise
PN-42	Grassy Lake	Wyoming	Minidoka
PN-43	Harper Dam	Oregon	Vale
PN-44	Haystack Canal	Oregon	Deschutes
PN-45	Howard Prairie	Oregon	Rogue River Basin
PN-46	Hubbard Dam	Idaho	Boise
PN-47	Hyatt Dam	Oregon	Rogue River Basin
PN-48	Kachess Dam	Washington	Yakima
PN-49	Keechelus Dam	Washington	Yakima
PN-50	Keene Creek	Oregon	Rogue River Basin
PN-51	Little Beaver Creek	Oregon	Rogue River Basin
PN-52	Little Wood River Dam	Idaho	Little Wood River
PN-53	Lytle Creek	Oregon	Crooked River
PN-54	Main Canal No. 10	Idaho	Boise
PN-55	Main Canal No. 6	Idaho	Boise
PN-56	Mann Creek	Idaho	Mann Creek
PN-57	Mason Dam	Oregon	Baker
PN-58	Maxwell Dam	Oregon	Umatilla
PN-59	McKay Dan	Oregon	Umatilla
PN-60	Mile 28 - on Milner Gooding Canal	Idaho	Minidoka
PN-61	Mora Canal Drop	Idaho	Boise
PN-62	North Canal Diversion Dam	Oregon	Deschutes
PN-63	North Unit Main Canal	Oregon	Deschutes

Table A-2 Site Identification Inventory

Site ID	Site Name	State	Project
PN-64	Oak Street	Oregon	Rogue River Basin
PN-65	Ochoco Dam	Oregon	Crooked River
PN-66	Orchard Avenue	Washington	Yakima
PN-67	Owyhee Tunnel No. 1	Oregon	Owyhee
PN-68	PEC Mile 26.3	Washington	Columbia Basin
PN-69	Phoenix Canal	Oregon	Rogue River Basin
PN-70	Pilot Butte Canal	Oregon	Deschutes
PN-71	Pinto Dam	Washington	Columbia Basin
PN-72	Potholes Canal Headworks	Washington	Columbia Basin
PN-73	Potholes East Canal - PEC 66.0	Washington	Columbia Basin
PN-74	Potholes East Canal 66.0	Washington	Columbia Basin
PN-75	Prosser Dam	Washington	Yakima
PN-76	Quincy Chute Hydroelectric	Washington	Columbia Basin
PN-77	RB4C W. W. Hwy26 Culvert	Washington	Columbia Basin
PN-78	Reservoir "A"	Idaho	Lewiston Orchards
PN-79	Ringold W. W.	Washington	Columbia Basin
PN-80	Ririe Dam	Idaho	Ririe River
PN-81	Rock Creek	Montana	Bitter Root
PN-82	Roza Diversion Dam	Washington	Yakima
PN-83	Russel D Smith	Washington	Columbia Basin
PN-84	Saddle Mountain W. W.	Washington	Columbia Basin
PN-85	Salmon Creek	Washington	Okanogan
PN-86	Salmon Lake	Washington	Okanogan
PN-87	Scoggins	Oregon	Tualatin
PN-88	Scootney Wasteway	Washington	Columbia Basin
PN-89	Soda Creek	Oregon	Rogue River Basin
PN-90	Soda Lake Dike	Washington	Columbia Basin
PN-91	Soldier's Meadow	Idaho	Lewiston Orchards
PN-92	South Fork Little Butte Creek	Oregon	Rogue River Basin
PN-93	Spectacle Lake Dike	Washington	Chief Joseph Dam
PN-94	Summer Falls on Main Canal	Washington	Columbia Basin
PN-95	Sunnyside Diversion Dam	Washington	Yakima
PN-96	Sweetwater Canal	Idaho	Lewiston Orchards
PN-97	Thief Valley Dam	Oregon	Baker
PN-98	Three Mile Falls	Oregon	Umatilla
PN-99	Tieton Diversion	Washington	Yakima
PN-100	Unity Dam	Oregon	Burnt River
PN-101	Warm Springs Dam	Oregon	Vale
PN-102	Wasco Dam	Oregon	Wapinitia
PN-103	Webb Creek	Idaho	Lewiston Orchards
PN-104	Wickiup Dam	Oregon	Deschutes
PN-105	Wild Horse - BIA	Nevada	Duck Valley Irrigation District - BIA
UC-1	Alpine Tunnel	Utah	Central Utah Project - Bonneville Unit
UC-2	Alpine-Draper Tunnel	Utah	Provo River
UC-3	American Diversion Dam	New Mexico	Rio Grande

Table A-2 Site Identification Inventory

Site ID	Site Name	State	Project
UC-4	Angostura Diversion	New Mexico	Middle Rio Grande
UC-5	Arthur V. Watkins Dam	Utah	Weber Basin
UC-6	Avalon Dam	New Mexico	Carlsbad
UC-7	Azeotea Creek and Willow Creek Conveyance Channel Station 1565+00	New Mexico	San Juan-Chama
UC-8	Azeotea Creek and Willow Creek Conveyance Channel Station 1702+75	New Mexico	San Juan-Chama
UC-9	Azeotea Creek and Willow Creek Conveyance Channel Station 1831+17	New Mexico	San Juan-Chama
UC-10	Azotea Creek and Willow Creek Conveyance Channel Outlet	New Mexico	San Juan-Chama
UC-11	Azotea Tunnel	New Mexico	San Juan-Chama
UC-12	Beck's Feeder Canal	Utah	Sanpete
UC-13	Big Sandy Dam	Wyoming	Eden
UC-14	Blanco diversion Dam	New Mexico	San Juan-Chama
UC-15	Blanco Tunnel	New Mexico	San Juan-Chama
UC-16	Brantley Dam	New Mexico	Brantley
UC-17	Broadhead Diversion Dam	Utah	Provo River
UC-18	Brough's Fork Feeder Canal	Utah	Sanpete
UC-19	Caballo Dam	New Mexico	Rio Grande
UC-20	Cedar Creek Feeder Canal	Utah	Sanpete
UC-21	Cottonwood Creek/Huntington Canal	Utah	Emery County
UC-22	Crawford Dam	Colorado	Smith Fork
UC-23	Currant Creek Dam	Utah	Central Utah Project - Bonneville Unit
UC-24	Currant Tunnel	Utah	Central Utah Project - Bonneville Unit
UC-25	Dam No. 13	New Mexico	Vermejo
UC-26	Dam No. 2	New Mexico	Vermejo
UC-27	Davis Aqueduct	Utah	Weber Basin
UC-28	Dolores Tunnel	Colorado	Dolores
UC-29	Docs Diversion Dam	Utah	Central Utah Project - Bonneville Unit
UC-30	Duchesne Diversion Dam	Utah	Provo River
UC-31	Duchesne Tunnel	Utah	Provo River
UC-32	Duchesne Feeder Canal	Utah	Moon Lake
UC-33	East Canal	Utah	Newton
UC-34	East Canal	Colorado	Uncompahgre
UC-35	East Canal Diversion Dam	Colorado	Uncompahgre
UC-36	East Canyon Dam	Utah	Weber Basin
UC-37	East Fork Diversion Dam	Colorado	Collbran
UC-38	Eden Canal	Wyoming	Eden
UC-39	Eden Dam	Wyoming	Eden
UC-40	Ephraim Tunnel	Utah	Sanpete
UC-41	Farmington Creek Stream Inlet	Utah	Weber Basin

Table A-2 Si	te Identification	Inventory
--------------	-------------------	-----------

Site ID	Site Name	State	Project
UC-42	Fire Mountain Diversion Dam	Colorado	Paonia
UC-43	Florida Farmers Diversion Dam	Colorado	Florida
UC-44	Fort Sumner Diversion Dam	New Mexico	Fort Sumner
UC-45	Fort Thornburgh Diversion Dam	Utah	Central Utah Project - Vernal Unit
UC-46	Fruitgrowers Dam	Colorado	Fruitgrowers Dam
UC-47	Garnet Diversion Dam	Colorado	Uncompahgre
UC-48	Gateway Tunnel	Utah	Weber Basin
UC-49	Grand Valley Diversion Dam	Colorado	Grand Valley
UC-50	Great Cut Dike	Colorado	Dolores
UC-51	Gunnison Diversion Dam	Colorado	Uncompahgre
UC-52	Gunnison Tunnel	Colorado	Uncompahgre
UC-53	Hades Creek Diversion Dam	Utah	Central Utah Project - Bonneville Unit
UC-54	Hades Tunnel	Utah	Central Utah Project - Bonneville Unit
UC-55	Haights Creek Stream Inlet	Utah	Weber Basin
UC-56	Hammond Diversion Dam	New Mexico	Hammond
UC-57	Heron Dam	New Mexico	San Juan-Chama
UC-58	Highline Canal	Utah	Newton
UC-59	Huntington North Dam	Utah	Emery County
UC-60	Huntington North Feeder Canal	Utah	Emery County
UC-61	Huntington North Service Canal	Utah	Emery County
UC-62	Hyrum Dam	Utah	Hyrum
UC-63	Hyrum Feeder Canal	Utah	Hyrum
UC-64	Hyrum-Mendon Canal	Utah	Hyrum
UC-65	Indian Creek Crossing Div. Dam	Utah	Strawberry Valley
UC-66	Indian Creek Dike	Utah	Strawberry Valley
UC-67	Inlet Canal	Colorado	Mancos
UC-68	Ironstone Canal	Colorado	Uncompahgre
UC-69	Ironstone Diversion Dam	Colorado	Uncompahgre
UC-70	Isleta Diversion Dam	New Mexico	Middle Rio Grande
UC-71	Jackson Gulch Dam	Colorado	Mancos
UC-72	Joes Valley Dam	Utah	Emery County
UC-73	Jordanelle Dam	Utah	Central Utah Project - Bonneville Unit
UC-74	Knight Diversion Dam	Utah	Central Utah Project - Bonneville Unit
UC-75	Layout Creek Diversion Dam	Utah	Central Utah Project - Bonneville Unit
UC-76	Layout Creek Tunnel	Utah	Central Utah Project - Bonneville Unit
UC-77	Layton Canal	Utah	Weber Basin
UC-78	Leasburg Diversion Dam	New Mexico	Rio Grande
UC-79	Leon Creek Diversion Dam	Colorado	Collbran
UC-80	Little Navajo River Siphon	New Mexico	San Juan-Chama
UC-81	Little Oso Diversion Dam	Colorado	San Juan-Chama
UC-82	Little Sandy Diversion Dam	Wyoming	Eden

Table A-2 Site Identification Inventory

Site ID	Site Name	State	Project
UC-83	Little Sandy Feeder Canal	Wyoming	Eden
UC-84	Lost Creek Dam	Utah	Weber Basin
UC-85	Lost Lake Dam	Utah	Central Utah Project - Bonneville Unit
UC-86	Loutzenheizer Canal	Colorado	Uncompahgre
UC-87	Loutzenheizer Diversion Dam	Colorado	Uncompangre
UC-88	Lucero Dike	New Mexico	Rio Grande
UC-89	M&D Canal-Shavano Falls	Colorado	Uncompahgre
UC-90	Madera Diversion Dam	Texas	Balmorhea
UC-91	Main Canal	Utah	Newton
UC-92	Means Canal	Wyoming	Eden
UC-93	Meeks Cabin Dam	Wyoming	Lyman
UC-94	Mesilla Diversion Dam	New Mexico	Rio Grande
UC-95	Middle Fork Kays Creek Stream Inlet	Utah	Weber Basin
UC-96	Midview Dam	Utah	Moon Lake
UC-97	Mink Creek Canal	Idaho	Preston Bench
UC-98	Montrose and Delta Canal	Colorado	Uncompahgre
UC-99	Montrose and Delta Div. Dam	Colorado	Uncompahgre
UC-100	Moon Lake Dam	Utah	Moon Lake
UC-101	Murdock Diversion Dam	Utah	Provo River
UC-102	Nambe Falls Dam	New Mexico	San Juan-Chama
UC-103	Navajo Dam Diversion Works	New Mexico	Navajo Indian Irrigation
UC-104	Newton Dam	Utah	Newton
UC-105	Ogden Brigham Canal	Utah	Ogden River
UC-106	Ogden Valley Canal	Utah	Weber Basin
UC-107	Ogden Valley Diversion Dam	Utah	Weber Basin
UC-108	Ogden-Brigham Canal	Utah	Ogden River
UC-109	Olmstead Diversion Dam	Utah	Central Utah Project - Bonneville Unit
UC-110	Olmsted Tunnel	Utah	Provo River
UC-111	Open Channel #1	Utah	Central Utah Project - Bonneville Unit
UC-112	Open Channel #2	Utah	Central Utah Project - Bonneville Unit
UC-113	Oso Diversion Dam	Colorado	San Juan-Chama
UC-114	Oso Feeder Conduit	New Mexico	San Juan-Chama
UC-115	Oso Tunnel	New Mexico	San Juan-Chama
UC-116	Outlet Canal	Colorado	Mancos
UC-117	Paonia Dam	Colorado	Paonia
UC-118	Park Creek Diversion Dam	Colorado	Collbran
UC-119	Percha Arroyo Diversion Dam	New Mexico	Rio Grande
UC-120	Percha Diversion Dam	New Mexico	Rio Grande
UC-121	Picacho North Dam	New Mexico	Rio Grande
UC-122	Picacho South Dam	New Mexico	Rio Grande
UC-123	Pineview Dam	Utah	Ogden River
UC-124	Platoro Dam	Colorado	San Luis Valley

Table A-2 Site Identification Inventory

Site ID	Site Name	State	Project
UC-125	Provo Reservoir Canal	Utah	Provo River
UC-126	Red Fleet Dam	Utah	Central Utah Project - Jensen Unit
UC-127	Rhodes Diversion Dam	Utah	Central Utah Project - Bonneville Unit
UC-128	Rhodes Flow Control Structure	Utah	Central Utah Project - Bonneville Unit
UC-129	Rhodes Tunnel	Utah	Central Utah Project - Bonneville Unit
UC-130	Ricks Creek Stream Inlet	Utah	Weber Basin
UC-131	Ridgway Dam	Colorado	Dallas Creek
UC-132	Rifle Gap Dam	Colorado	Silt
UC-133	Riverside Diversion Dam	Texas	Rio Grande
UC-134	S.Ogden Highline Canal Div. Dam	Utah	Ogden River
UC-135	San Acacia Diversion Dam	New Mexico	Middle Rio Grande
UC-136	Scofield Dam	Utah	Scofield
UC-137	Selig Canal	Colorado	Uncompahgre
UC-138	Selig Diversion Dam	Colorado	Uncompahgre
UC-139	Sheppard Creek Stream Inlet	Utah	Weber Basin
UC-140	Silver Jack Dam	Colorado	Bostwick Park
UC-141	Sixth Water Flow Control	Utah	Central Utah Project - Bonneville Unit
UC-142	Slaterville Diversion Dam	Utah	Weber Basin
UC-143	Smith Fork Diversion Dam	Colorado	Smith Fork
UC-144	Soldier Creek Dam	Utah	Central Utah Project - Bonneville Unit
UC-145	South Canal Tunnels	Colorado	Uncompahgre
UC-146	South Canal, Sta 19+ 10 "Site #1"	Colorado	Uncompahgre
UC-147	South Canal, Sta. 181+10, "Site #4"	Colorado	Uncompangre
UC-148	South Canal, Sta. 472+00, "Site #5"	Colorado	Uncompahgre
UC-149	South Canal, Sta. 72+50, Site #2"	Colorado	Uncompahgre
UC-150	South Canal, Sta.106+65, "Site #3"	Colorado	Uncompahgre
UC-151	South Feeder Canal	Utah	Sanpete
UC-152	South Fork Kays Creek Stream	Utah	Weber Basin
UC-153	Southside Canal	Colorado	Collbran
UC-154	Southside Canal, Sta 171+ 90 thru 200+ 67 (2 canal drops)	Colorado	Collbran
UC-155	Southside Canal, Sta 349+ 05 thru 375+ 42 (3 canal drops)	Colorado	Collbran
UC-156	Southside Canal, Station 1245 + 56	Colorado	Collbran
UC-157	Southside Canal, Station 902 + 28	Colorado	Collbran
UC-158	Spanish Fork Diversion Dam	Utah	Strawberry Valley
UC-159	Spanish Fork Flow Control Structure	Utah	Central Utah Project - Bonneville Unit
UC-160	Spring City Tunnel	Utah	Sanpete

Table A-2 Site Identification Inventory

Site ID	Site Name	State	Project
UC-161	Staight Creek Stream Inlet	Utah	Weber Basin
UC-162	Starvation Dam	Utah	Central Utah Project - Bonneville Unit
UC-163	Starvation Feeder Conduit Tunnel	Utah	Central Utah Project - Bonneville Unit
UC-164	Stateline Dam	Utah	Lyman
UC-165	Station Creek Tunnel	Utah	Preston Bench
UC-166	Steinaker Dam	Utah	Central Utah Project - Vernal Unit
UC-167	Steinaker Feeder Canal	Utah	Central Utah Project - Vernal Unit
UC-168	Steinaker Service Canal	Utah	Central Utah Project - Vernal Unit
UC-169	Stillwater Tunnel	Utah	Central Utah Project - Bonneville Unit
UC-170	Stoddard Diversion Dam	Utah	Weber Basin
UC-171	Stone Creek Stream Inlet	Utah	Weber Basin
UC-172	Strawberry Tunnel Turnout	Utah	Central Utah Project - Bonneville Unit
UC-173	Stubblefield Dam	New Mexico	Vermejo
UC-174	Sumner Dam	New Mexico	Carlsbad
UC-175	Swasey Diversion Dam	Utah	Emery County
UC-176	Syar Inlet	Utah	Central Utah Project - Bonneville Unit
UC-177	Syar Tunnel	Utah	Central Utah Project - Bonneville Unit
UC-178	Tanner Ridge Tunnel	Utah	Central Utah Project - Bonneville Unit
UC-179	Taylor Park Dam	Colorado	Uncompahgre
UC-180	Towaoc Canal	Colorado	Dolores
UC-181	Trial Lake Dam	Utah	Central Utah Project - Bonneville Unit
UC-182	Tunnel #1	Colorado	Grand Valley
UC-183	Tunnel #2	Colorado	Grand Valley
UC-184	Tunnel #3	Colorado	Grand Valley
UC-185	Upper Diamond Fork Flow Control Structure	Utah	Central Utah Project - Bonneville Unit
UC-186	Upper Diamond Fork Tunnel	Utah	Central Utah Project - Bonneville Unit
UC-187	Upper Stillwater Dam	Utah	Central Utah Project - Bonneville Unit
UC-188	Vat Diversion Dam	Utah	Central Utah Project - Bonneville Unit
UC-189	Vat Tunnel	Utah	Central Utah Project - Bonneville Unit
UC-190	Vega Dam	Colorado	Collbran
UC-191	Vermejo Diversion Dam	New Mexico	Vermejo
UC-192	Washington Lake Dam	Utah	Central Utah Project - Bonneville Unit
UC-193	Water Hollow Diversion Dam	Utah	Central Utah Project -

Table A-2 Site Identification Inventory

Site ID	Site Name	State	Project
			Bonneville Unit
UC-194	Water Hollow Tunnel	Utah	Central Utah Project - Bonneville Unit
UC-195	Weber Aqueduct	Utah	Weber Basin
UC-196	Weber-Provo Canal	Utah	Provo River
UC-197	Weber-Provo Diversion Canal	Utah	Provo River
UC-198	Weber-Provo Diversion Dam	Utah	Provo River
UC-199	Wellsville Canal	Utah	Hyrum
UC-200	West Canal	Colorado	Uncompahgre
UC-201	West Canal Tunnel	Colorado	Uncompahgre
UC-202	Willard Canal	Utah	Weber Basin
UC-203	Win Diversion Dam	Utah	Central Utah Project - Bonneville Unit
UC-204	Win Flow Control Structure	Utah	Central Utah Project - Bonneville Unit
UC-205	Yellowstone Feeder Canal	Utah	Moon Lake

Table A-2 Site Identification Inventory

Appendix B Green Incentives Programs

A wide variety of financial incentives for the implementation of renewable energy generation are available for new facilities within the United States, assuming they meet what can be very specific criteria. Often hydropower generation does not meet the criteria. Hydropower does qualify for Federal incentives, but most states offer no or limited incentives for hydropower. This appendix details financial incentives currently available for the installation and generation of hydropower within specific states.

B.1 Types of Incentives and Policies Renewable Energy

The Hydropower Assessment Tool considers financial incentives from performance-, or generation-, based incentives; however, several types of incentives are potentially available for the implementation of hydropower electricity generation at both the state and Federal levels. These incentives need to be assessed on a case by case basis as they can vary depending on location, ownership, generation capacity, and date of implementation.

Corporate or Property Tax Credits

Generally administered by states, these incentives provide corporations with tax credits, deductions, and/or exemptions typically associated with the implementation of renewable energy facilities. In a few cases, these tax incentives are based on the amount of energy produced at a facility. Individual state tax incentives generally have a maximum amount of credit or deduction allowed and in some cases cannot be stacked with or taken if federal tax incentives are also available.

For most states, there are limitations in types of renewable energy that are eligible and the amounts that can be claimed.

PACE Financing

Property-Assessed Clean Energy (PACE) financing is generally a type of loan, administered by local government who are authorized by the state, which is repaid typically via a special assessment on the owner's property over time.

Utility Rebate Programs

These are programs offered by utilities to encourage development of renewable energy and energy efficiency measures. These programs typically target specific types of renewable energy systems (such as photovoltaic or hydropower) and can be used by utilities to help them meet renewable portfolio standards or other renewable power generation requirements.

Performance-Based Incentives

Also known as generation-based or production-based incentives, these types of incentives can include a wide range of financial mechanisms that generally include a utility providing case payment to a renewable energy generator based on the amount of kilowatt hours (kWh) of renewable energy generated. These incentives are commonly accompanied by strict limitations for types of renewable energies included and other incentives that can be used when also receiving the performance-based incentives.

B.2 Federal Incentives for Hydroelectric Power Generation

As shown in the tables at the end of this appendix, the primary incentives available for renewable energy on a federal basis are the Production Tax Credit (PTC) or Investment Tax Credit (ITC). While these are two separate programs, as of 2009, facilities that qualify for the PTC could opt instead for two other options (not in addition to):

- Take the Federal business energy ITC, which incentivizes the implementation of renewable energy; versus
- Receive an equivalent cash grant from the U.S. Treasury Department

Both options generally equal 30 percent of eligible costs. It should be noted that in 2009 and 2010 there have been several bills within both the U.S. House and Senate that address energy, including renewable energy generation, impacts on climate change, and renewable portfolio standards (RPS). While to date, none of the bills or initiatives have successfully navigated the legislative branches, discussions continue to particularly focus on a federal RPS which proponents feel would standardize renewable energy generation requirements and incentives nationwide.

B.3 State Incentives for Hydroelectric Power Generation

Generation-, or performance-, based and installation-based incentives also exist on a state by state basis. In many cases, state incentives can be utilized along with federal incentives, further enhancing financial opportunities; however navigating program details are very important as each program has different thresholds, allowed installation size, and renewable generation type.

It was generally noted, for the states included in this assessment, that many states have a wide range of financial incentives for renewable energy but those incentives do not include hydropower generation. State incentives are listed individually in the tables attached at the end of this appendix. Additional details and insights specific to state programs (where necessary) are also provided below.

Arizona

Incentive programs within Arizona are primarily funded by utilities looking to comply with the state's RPS. These programs are administered by the individual utilities, require that the hydropower generation facility surrender their Renewable Energy Credits (RECs), and have limitation on the amount of incentives received from other sources.

Similar to most states, property tax exemptions are also available.

California

California's renewable energy program is both extensive and complex. Many of the energy initiatives in the state are driven by their existing RPS regulations, which require utilities to meet a 20 percent renewable generation requirement by 2010, and by the Global Warming Solutions Act of 2006 (AB 32), which includes a variety of complementary measures to reduce GHG emissions (such as adding a RPS of 33 percent by 2020 for utilities in state).

While a range of incentives exist, California's regulatory landscape can be difficult to navigate and may result in additional costs to project implementation, reducing the net benefit of renewable energy incentives. The incentives noted here do not take these potential direct and indirect financial costs into account, primarily because they must be evaluated on an individual project basis. Therefore, it is important for any project developer to consider both the location and regulatory requirements in each unique location in California.

Colorado

While there is a renewable portfolio goal in Colorado (30 percent by 2020), incentives for hydropower are primarily in the form of utility rebates focused on installations (versus generation). In addition to the utilities, grant programs and rebates are available for installation of hydropower in several communities throughout the state

Idaho

The state currently has no RPS regulation or goal. Available incentives are in the form of tax refunds and bonds.

Kansas

While there is a RPS in Kansas (20 percent by 2020), incentives for hydropower are primarily in the form of tax credits focused on installations (versus generation).

Montana

While there is a RPS in Montana (15 percent by 2015), incentives associated with this program and purchases of RECs are for solar, wind, and geothermal explicitly. (No listings for hydropower).

Incentives for hydropower are primarily in the form of tax credits and exemptions, focused on installations (versus generation).

Nebraska

The state currently has no RPS regulation or goal. Only limited tax incentives are available and focused on wind power generation specifically.

Nevada

Nevada does have an active REC market which utilities participate in to meet the 25 percent by 2025 standard. As with all markets, in the absence of a Federal RPS and uncertainty of what will happen if a Federal program is, or is not, implemented, this market is in a state of flux. Also, similar to other REC state and regional markets, RECs associated with solar energy are typically sold for much higher than any other renewable energy, including hydropower. As with all RECs, it is highly recommended that a producer consult a respected REC broker specific to their property location and generation capacity as prices can vary widely based on utility, number of RECs generated, and length of contract.

In addition to the REC potential incentives, other implementation-based incentives, such as tax credits and PACE funding, are available in the state, based on location.

New Mexico

While there is a RPS in New Mexico (20 percent by 2020), incentives associated with this program and purchases of RECs are for solar explicitly. (No listings for hydropower).

North Dakota

While there is a RPS in North Dakota (10 percent by 2015), this RPS is considered a very low/easily achievable standard in comparison to other states. In addition, available incentives, including tax credits are focused on solar and wind energy explicitly. (No listings for hydropower).

Oklahoma

While there is a RPS in Oklahoma (15 percent by 2015), only minimal incentives are available explicitly for hydropower, in particular PACE funding for implementation.

Oregon

Oregon has a 25 percent by 2025 RPS that does include hydropower in its listing of eligible RECs, though limited information is available on RECs specifically traded for hydropower generation. All available utility rebates, generally driven by compliance with the state RPS, are focused on solar power generation and/or energy efficiency at commercial, industrial, and residential locations.

Oregon does have a wide range of loan, tax, and grant incentives available for the implementation of hydropower within the state.

South Dakota

South Dakota has a 10 percent by 2025 RPS goal that does include hydropower in its listing of eligible RECs; however, the goal is for renewable, recycled, and conserved energy. All available utility rebates, generally driven by compliance with the state RPS, are focused on energy efficiency at commercial and residential locations. Property tax exemptions for hydropower generation facilities are available.

Texas

Texas' renewable power generation market has been largely focused on wind and some solar generation. There are numerous implementation-based incentives, though those also are focused on solar and wind technologies explicitly.

Utah

Utah has a renewable portfolio goal which utilities participate in to meet the 20 percent by 2025 standard. Different from other states RPS, Utah's program requires utilities to pursue renewable energy options only if it cost effective to do so.

As with all markets, in the absence of a Federal RPS and uncertainty of what will happen if a Federal program is, or is not, implemented, this market is in a state of flux. Also similar to other REC state and regional markets, RECs associated with solar energy are typically sold for much higher than any other renewable energy, including hydropower. As with all RECs, it is highly recommended that a producer consult a respected REC broker specific to their property location and generation capacity as prices can vary widely based on utility, number of RECs generated and length of contract.

There are numerous implementation-based incentives, though they are also focused on solar and wind technologies explicitly.

Washington

Incentive programs within Washington are primarily funded by utilities looking to comply with the state's RPS. These programs are administered by the individual utilities, require that the hydropower generation facility surrender their RECs, and have limitation on the amount of incentives received from other sources.

Wyoming

The state currently has no RPS regulation or goal. Available incentives are in the form of sales tax exemptions.

B.4 Summary Tables

The table below summarizes the green incentives rates used in the analysis for each state. On the following pages, Summary Tables B-1 through B-18 identify some incentive programs available from Federal and State programs. Due to the complexity and variability of the implementation-based incentives, only generation-based incentives have been included in the Hydropower Assessment Tool.

State	Incentive Value	Notes
Arizona	\$0.054	20 year agreement, can be stacked with Federal incentive ¹ .
California	\$0.0984	Applicable to small hydropower facilities up to 3 MW, 20 year agreement, cannot be stacked with Federal incentive or participate in other state programs.
Colorado	Use Federal incentive rate	No state performance-based incentives available
Idaho	Use Federal incentive rate	No state performance-based incentives available
Kansas	Use Federal incentive rate	No state performance-based incentives available
Montana	Use Federal incentive rate	Performance-based incentives do not apply to hydropower
Nebraska	Use Federal incentive rate	No state performance-based incentives available
Nevada	Use Federal incentive rate	Performance-based incentives available, but cannot be quantified at this time
New Mexico	Use Federal incentive rate	Performance-based incentives do not apply to hydropower
North Dakota	Use Federal incentive rate	Performance-based incentives do not apply to hydropower
Oklahoma	Use Federal incentive rate	No state performance-based incentives available
Oregon	Use Federal incentive rate	No state performance-based incentives available
South Dakota	Use Federal incentive rate	No state performance-based incentives available
Texas	Use Federal incentive rate	Performance-based incentives do not apply to hydropower
Utah	Use Federal incentive rate	Performance-based incentives do not apply to hydropower
Wyoming	Use Federal incentive rate	No state performance-based incentives available
Washington	\$0.21	Available in first year of service, can be stacked with Federal incentive

Performance Based Incentives (\$/kWh)

Notes:

1 – Federal incentive rate is \$0.011 per KWh for the first 10 years of service

Table B-1 Federal Incentives

Program		Renewable Electricity Production Tax Credit (PTC)		Business Energy Investment Tax Credit (ITC)	USDA - Rural Energy for America Program (REAP) Grants
Incentive Type Corporate Tax Credit		Corporate Tax Credit		Corporate Tax Credit or Federal Grant	Federal Grant Program
Description		The federal renewable electricity production tax credit (PTC) is a per-kilowatt-hour tax credit for electricity generated by qualified energy resources and sold by the taxpayer to an unrelated person during the taxable year. Credits generally given for 10 years following in service date.		The American Recovery and Reinvestment Act of 2009 allows taxpayers, eligible for the federal PTC, to take the federal business energy investment tax credit (ITC) or to receive a grant from the U.S. Treasury Department instead of taking the PTC for new installations.	REAP promotes energy efficiency and renewable energy for agricultural producers and rural small businesses.
Applicability		Qualified hydroelectric generation in service by Dec. 31, 2013.	Non-Generation based Incentives	PTC qualified facility	"USDA will also make competitive grants to eligible entities to provide assistance to agricultural producers and rural small businesses "to become more energy efficient" and "to use renewable energy technologies and resources." These grants are generally available to state government entities, local governments, tribal governments, land-grant colleges and universities, rural electric cooperatives and public power entities, and other entities, as determined by the USDA."
Amount of	Program units	0.75¢/kWh in 1993 dollars		2004 of eligible cost for implementation	Competitive grants of up to 25% project cost; loan up to \$25M. Grants and Loans may
Incentive	\$/kWh	\$0.011 (2010 to 2013)	Non-	30% of eligible cost for implementation	combine for up to 75% of project costs.
Can this be us incentives?	ed with other	 a) The tax credit is reduced for projects that receive other federal tax credits, grants, tax- exempt financing, or subsidized energy financing. b) PTC eligible facilities can opt for ITC or equiv. cash grant approximately equal to 30% of eligible costs 	•	This would be instead of the PTC: cannot be combined with other federal tax credit incentives.	
Additional info		2009 tax form 8835 (http://www.irs.gov/pub/irs-pdf/f8835.pdf) and 2009 tax form 3800 (http://www.irs.gov/pub/irs-pdf/f3800.pdf)			Amounts available: \$60 million for FY 2010, \$70 million for FY 2011, and \$70 million for FY 2012.
Source		Internal revenue services: 26 USC section 45; American recovery and reinvestment act of 2009: http://thomas.loc.gov/home/h1/Recovery_Bill _Div_B.pdf		American recovery and reinvestment act of 2009: http://thomas.loc.gov/home/h1/Recovery_B ill_Div_B.pdf	

Program		APS - Renewable Energy Incentive Program	TEP - Renewable Energy Credit Purchase Program	UES - Renewable Energy Credit Purchase Program		Energy Equipment Property Tax Exemption
Incentive Type		Utility Rebate Program	Utility Rebate Program	Utility Rebate Program		Property Tax Incentive
Description		Renewable Incentive Program, Arizona Public Service (APS) offers customers who install various renewable energy sources the opportunity to sell the credits associated with the energy generated to APS.	Tucson Electric Power (TEP) created the SunShare Program. TEP offers these incentives in exchange for the renewable energy certificates they generate.	Through the Renewable Incentive Program, UniSource Energy Services (UES) offers customers who install various renewable energy sources the opportunity to sell the credits associated with the energy generated to UES.		For property tax assessment purposes, these devices [renewable energy including low-impact hydropower] are considered to add no value to the property.
Applicability		PS Incentives are available for a variety of renewable energy technologies installed in the APS service area. Amounts vary based on the type of technology used and the scope of your project.	The technologies now eligible for funding through the RECPP all qualify under Arizona's renewable energy standard (RES) including commercial small hydro. Hydro must be installed in TEP's service area.	All technologies eligible for Arizona's Renewable Energy Standard (RES).	les	Any property installing renewable energy equipment in AZ.
Amount of Incentive	Program units	APS requires you to call with specific project information to discuss the production based incentives. No upfront (implementation) incentives are available under this program (though other incentive values mirror TEP's program).	Performance-based incentives (PBIs)	Performance-based incentives (PBIs)	eration based Incentives	Dependant on Property: tax exemption associated with installation cost.
	\$/kWh		\$0.060 (10yr agreement), \$0.056 (15yr agreement), \$0.054 (20yr agreement) signed in 2010-2014 (tenative for 2011-2014 and dependant on ACC incentive approval). PBI can't exceed 60% of real project cost.	\$0.060 (10yr agreement), \$0.056 (15yr agreement), \$0.054 (20yr agreement) signed in 2010-2014 (tenative for 2011-2014 and dependant on ACC incentive approval). PBI can't exceed 60% of real project cost.	Non-Genera	
Can this be used with other incentives?		Yes with restrictions (must pay for 15% of project cost after all state and federal incentives).	Yes with restrictions (must pay for 15% of project cost after all state and federal incentives). Exception: may not receive incentives if other utility incentives are applied. Note RECs are sold.	Yes with restrictions (must pay for 15% of project cost after all state and federal incentives). Exception: may not receive incentives if other utility incentives are applied. Note RECs are sold.		Implication is yes though not explicitly stated.
Additional info			The PBI are awarded via a bid process, so lower bids have a higher potential for aceptance. http://www.tep.com/Green/Home/hydro.asp	The PBI are awarded via a bid process, so lower bids have a higher potential for aceptance. http://uesaz.com/Green/Home/hydro.asp		Documentation on installtion and cost must be submitted to County Assessor no less then 6 months before "the notice of full cash value is issued for the initial valuation year."
Source		APS: Solar and Renewable Energy: http://www.aps.com/main/green/choice/sola r/default.html	TEP: Green Energy - http://www.tep.com/Green/	UES: Green Energy - http://uesaz.com/Green/		

Program		California Feed-In Tariff		Local Option - Municipal Energy Districts	
Incentive Type		Performance-Based Incentive		PACE Financing	
Description		The California feed-in tariff allows eligible customer- generators to enter into 10-, 15- or 20-year standard contracts with their utilities to sell the electricity produced by small renewable energy systems at time-differentiated market-based prices.		Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is typically repaid via a special assessment on the property over a period of years. Only certain communties included.	
Applicability		Small hydro electric (up to 3 MW).	ent		
Amount of	Program units	MPR vary by year and contract size (10, 15, or 20- year agreements)		All this is determined on a case by case/community by community basis. Recommend reviewing for	
Incentive	\$/kWh	(2010): 10-yr \$0.09357/kWh, 15-yr \$0.09591/kWh, 20-yr \$0.09840/kWh,	n based Incentives	specific implementation only. Local options also available for property and sales tax incentives	
Can this be us incentives?	sed with other	No: cannot participate in other state programs		which should be reviewed for specific installations Note that in CA PACE loans require the owner	
Additional info		REC are surrendered for life of contract to one of the three publicly-owned utilities (SCE, PG&E, SDG&E). CPUC: Energy Division Resolution E- 4137	Non-Generation	agree to contractual assessments on their property tax bill for up to 20 yrs.	
Source		CPUC, Feed-in Tariff program page: http://www.cpuc.ca.gov/PUC/energy/Renewables/h ot/feedintariffs.htm			
Note: SMUD also has a feed in tariff program, however as of July 2010 it is over subscribed and only accepting applications as a "waiting list".					
Also note: REC program is being revised to include tRECs in the next year. This could change performance incentives in CA.					

Table B-4 Colorado State Incentives

Program				Holy Cross Energy - WE CARE Rebates	La Plata Electric Association Renewable Generation Rebate Program	New Energy Economic Development Grant	Improvement Districts for Energy Efficiency and Renewable Energy Improvements
Incentive Type	Incentive Type		Local Rebate Program	Utility Rebate Program	Utility Rebate Program		PACE Financing
Description		Resource Efficiency (CORE), a nonprofit organization promoting renewable energy and energy efficiency in western Colorado, offers residential and commercial rebates within the Roaring Fork		Holy Cross Energy's WE CARE (With Efficiency, Conservation And Renewable Energy) Program offers a \$1.50-per watt DC incentive for renewable energy generation using wind, hydroelectric, photovoltaic, biomass or geothermal technology.	To support and encourage the use of renewable generation, by offering customers payments for Renewable Energy Credits (RECs) as environmental attributes on approved installations.		Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is typically repaid via a special assessment on the property over a period of years. Only certain communties included.
Applicability		atic		Systems must be within Holy Cross's service territory and connected to Holy Cross Energy's electric system to qualify for renewable energy incentives.	Small hydro up to 10,000 watts (10 kW).	\$2M in funding approved in 2009. Additional funding may be available in the future, but nothing currently.	All this is determined on a case by
Amount of Prog Incentive \$/kV	ogram units Wh		\$0.50/Watt installed	\$1.50/Watt installed (\$1 rebate, \$0.50 REC purchase for 10 years)	Need to contact LPEA for specific project pricingREC purchased for 10 year		case/community by community basis. Recommend reviewing for specific implementation only. Local
Can this be used with incentives?	th other		Yes	Yes, though note REC are sold here (can only sell	Yes, though note REC are sold here (can only sell once)		options also available for property and sales tax incentives which should be reviewed for specific
Additional info		•	information: http://www.aspencore.org/file/COR	Up to 50% of installed costs, maximum of \$9,000. systems larger than 6 kW are eligible (but capped at \$9,000).	Policy was updated mid June 2010. Estimated cap is at \$7,000 per facility.		installations.

Table B-5 Idaho State Incentives

Program			Renewable Energy Equipment Sales Tax Refund	Renewable Energy Project Bond Program	
Incentive Type	Э		Sales Tax Incentive	State Bond Program	
Description		sed Incentives	Idaho offers a sales-and-use tax rebate for qualifying equipment and machinery used to generate electricity from fuel cells, low-impact hydro, wind, geothermal resources, biomass, cogeneration, solar and landfill gas.	Allows independent (non-utility) developers of renewable energy projects in the state to request financing from the Idaho Energy Resources Authority	
Applicability		bas	Any renewable system generating at least 25 kW.	All renewables	
	Program units	ration			
Amount of Incentive \$/kWh		Generat	100% of sales tax (6% of equipment sales price assuming tax was paid).		
Can this be used with other incentives?		Non-	Yes.		
Additional info		-	Valid for purchases through July 1, 2011.		

Table B-6 Kansas State Incentives

Program			Renewable Electricity Facility Tax Credit (Corporate)	Renewable Energy Property Tax Exemption	
Incentive Type	е		Corporate Tax Credit	Property Tax Incentive	
Description			Kansas provides an investment tax credit for certain renewable energy facilities constructed between January 1, 2007 and December 31, 2011.	Exempts renewable energy equipment from property taxes.	
Applicability		n bas	Facility must be owned by and located on the property of a commercial, industrial or ag business; project must run for 10 years	Renewable sources implemented after Jan 1, 1999.	
Amount of	Program units	ratio	10% of first \$50,000,000; 5% of costs above \$50M.	Property tax exemption from power generation equipment.	
Incentive	\$/kWh	ner			
Can this be used with other incentives?		Non-Ge	Not explicit, but implied yes.	Not explicit, but implied yes.	
Additional info		ž	Tax credit claimed in equal amounts over ten years. This is also known as the "Renewable Electric Cogeneration Facility Tax Credit", Reference KS Statue 79-201.		

Table B-7	' Montana	State	Incentives
-----------	-----------	-------	------------

Program		Renewable Portfolio Standard		Corporate Property Tax Reduction for New/Expanded Generating Facilities	Renewable Energy Systems Exemption
Incentive Typ	e			Property Tax Incentive	Property Tax Incentive
Description				This incentive reduces the local mill levy during the first nine years of operation, subject to approval by the local government.	Montana's property tax exemption for recognized non-fossil forms of energy generation to be claimed for 10 years after installation of the property.
Applicability		While MT has a 15% by 2015 RPS , all incentives and REC purchases are focused on solar, wind and geothermal, no	i based Incent	Generating plants producing one megawatt (MW) or more with an alternative renewable energy source are eligible for the new or expanded industry property tax reduction.	Small hydropower facilitiest at commercial, industrial, ag, or residential locations.
Amount of Incentive	Program units	hydropower.	n-Genera	Each year thereafter, the taxable value percentage is increased in equal increments until the full taxable value is attained in the	Property tax incentive for up to \$100,000 for non-residential structures.
	\$/kWh			tenth year. Only on local taxes.	
Can this be un incentives?	sed with other		No No	Not explicit, but implied yes.	Not explicit, but implied yes.
Additional info	0				
Source		PSR Authority: http://www.mtrules.org/gateway/ruleno.asp? RN=38.5.8301			

Table B-8 Nebraska State Incentives

Program		
Incentive Typ	e	
Description		-
Applicability		None found for NE: focus is on energy
Amount of Incentive	Program units	incentive available for renewables (wind projects only).
	\$/kWh	
Can this be u incentives?	sed with other	

Table B-9 Nevada State Incentives

Program		Portfolio Energy Credits		NV Energy - RenewableGenerations Rebate Program	Local Option - Special Improvement Districts	Renewable Energy Systems Property Tax Exemption
Incentive Type		Performance-Based Incentive		State Rebate Program	PACE Financing	Property Tax Incentive
Description		Nevada's Energy Portfolio Standard	•	Rebates made available to NV Energy customers to encourage implemenation of renewable energies in line with NV's RPS.	Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is typically repaid via a special assessment on the property over a period of years. Only certain communties included.	Value added from renewable energy generation is exempt from property taxes.
Applicability		Customer-maintained distributed renewable energy systems receive a 0.05 adder for each kilowatt-hour generated.	based Incentives	Small hydroelectric 1 MW and smaller.		All hydroelectric.
Amount of	Program units	Between \$0.50 and \$3 per kWh estimated.	based Ir	Non-net metered system \$2.80/W, net metered system \$2.50/W		100% of value added to property
Incentive	\$/kWh	Must see a broker, note that higher values for solar are typical	neration	(under 2010/2011 program).	All this is determined on a case by case/community by community	exempt.
Can this be use incentives?	d with other	Yes, however systems installed via NV Energy rebate program have already surrendered their PEC and therefore have nothing to sell into this system	Non-Generation	Yes, BUT: selling PEC here - cannot participate/resell PEC as it's gone.	basis. Recommend reviewing for specific implementation only. Local options also available for property and sales tax incentives which should be reviewed for	Yes.
Additional info		PEC prices are in a state of flux and it is currently not advised to include a price for PEC (or any form of REC) on a generic basis for those systems in an open market situation. Note PECs are typically issued for 4	•	Maximum incentive is \$560,00 for net metered system, \$500,000.	specific installations.	
		years.				
Source		PUCN: http://pucweb1.state.nv.us/PUCN/Re newableEnergy.aspx?AspxAutoDetec tCookieSupport=1				

Table B-10 New Mexico State Incentives

Program		
Incentive Type		
Description		
Applicability		Name found for NIM. All performance based incentives are forward on
Amount of Incentive	Program units	None found for NM: All performance based incentives are focusd on Photovoltaics (only one incentive for wind energy generation).
Amount of incentive	\$/kWh	· · · · · · · · · · · · · · · · · · ·
Can this be used with c	other incentives?	
Additional info		

Table B-11 North Dakota State Incentives

Program		
Incentive Type		
Description		
Applicability		None found for ND: Focus is on solar and win energy generation
Amount of Incentive	Program units	(hydropower is not even listed for the corporate tax credit incentives)
Amount of Incentive	\$/kWh	
Can this be used with o	other incentives?	
Additional info		

Table B-12 Oklahoma State Incentives

Program			Local Option - County Energy District Authority
Incentive Type		es	PACE Financing
Description		based Incentiv	Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay fo energy improvements. The amount borrowed is typically repaid via a special assessment on the property over a period of years. Only certain communties included.
Applicability		atior	
Amount of Incentive	Program units	enera	All this is determined on a case by case/community by community basis. Recommend reviewing for specific
Amount of incentive	\$/kWh	Non-Generation	implementation only. Local options also available for property and sales tax incentives which should be reviewed
Can this be used with o	other incentives?	₽ N	for specific installations.
Additional info			

Program			Business Energy Tax Credit	Local Option - Local Improvement Districts	Renewable Energy Systems Exemption	Community Renewable Energy Feasibility Fund Program
Incentive Type	e		Corporate Tax Credit	PACE Financing	Property Tax Incentive	State Grant Program (competitive)
Description		based Incentiv	Oregon's Business Energy Tax Credit (BETC) is for investments in energy conservation, recycling, renewable energy resources, sustainable buildings, and less- polluting transportation fuels.	Property-Assessed Clean Energy (PACE) financing effectively allows property owners to borrow money to pay for energy improvements. The amount borrowed is typically repaid via a special assessment on the property over a period of years. Only certain communties included.	Value added from renewable energy generation is exempt from property taxes.	The Oregon Department of Energy (ODOE) provides grants for feasibility studies for renewable energy, heat, and fuel projects under the Community Renewable Energy Feasibility Fund (CREFF). Funding for the program comes from a settlement between the Oregon Department of Justice and Reliant Energy.
Applicability		Non-Generation	Any Oregon business may qualify. Hydroelectric energy is eligible.		All hydroelectric.	Commercial hydroelectric 25 kw to 10 MW sized projects.
Amount of	Program units	Non	Tax credit equal to 50% certified project costs, over 5	All this is determined on a case by case/community by community basis. Recommend reviewing for specific	100% of value added to	Up to \$50,000 grant, though this is a competitive bid process with
Incentive	\$/kWh		years (10% per year); up to \$10 million.	implementation only. Local options also available for property and sales tax incentives	property exempt.	awards ranging from \$100,000 to \$500,000.
Can this be us incentives?	sed with other		Yes.	which should be reviewed for specific installations.	Yes.	Yes.
Additional info)				Program expires 7/1/2012 currently.	Approximately \$200,000 availabe in 2010.

Table B-14 South Dakota State Incentives

Program		es	Renewable Energy Systems Exemption
Incentive Type		Incentiv	Property Tax Incentive
Description			Value added from renewable energy generation is exempt from property taxes.
Applicability		ן based	All hydroelectric generation facilities, less than 5 MW.
Amount of	Program units	ration	\$50,000 or 70% of the assessed value of eligible property,
Incentive	\$/kWh	ner	whichever is greater.
Can this be use	ed with other incentives?	Non-Gene	Yes.
Additional info		Ž	Program effective as of 7/1/10. Credit available the first three years in service.

Table B-15 Texas State Incentives

Program		
Incentive Type	9	
Description		
Applicability		Numerous production and implementation based incentives, however they are all focused on PV, solar, and wind generatior
Amount of	Program units	technologies specifically.
Incentive	\$/kWh	
Can this be used with other incentives?		
Additional info		

Table B-16 Utah State Incentives

Program		
Incentive Typ	De	
Description		Numerous production and implementation based incentives, however
Applicability		they are all focused on PV, solar, and wind generation technologies specifically.
Amount of	Program units	Hydropower is listed as an accepted REC in UT (small hydropower
Incentive	\$/kWh	owners can net meter) and an active market for REC's exists. Howeve the rate is project specific and varies based on market conditions.
Can this be ι	used with other incentives?	
Additional inf	ō	

Table B-17 Wyoming State Incentives

Program			Renewable Energy Equipment Sales Tax Refund
Incentive Typ	e	ives	Sales Tax Incentive
Description		ed Incentive	Idaho offers a sales-and-use tax rebate for qualifying equipment and machinery used to generate electricity from renewables including hydroelectric.
Applicability		based	Any renewable system generating at least 25 kW.
Amount of	Program units	ation	100% of sales tax (4% of equipment sales price assuming tax was
Incentive	\$/kWh	nera	paid).
Can this be u	sed with other incentives?	Non-Generation	Yes.
Additional info	0		Valid for purchases through June 30, 2012.

|--|

Program		Chelan County PUD - Sustainable Natural Alternative Power Producers Program	Orcas Power & Light - Production Incentive	
Incentive Type		Performance-Based Incentive	Performance-Based Incentive	
Description		Sustainable Natural Alternative Power (SNAP) program encourages customers to install alternative power generators and connect them to the District's electrical distribution system by offering an incentive payment based on the system's production.	Orcas Power and Light (OPALCO), an electric cooperative serving Washington's San Juan Islands, provides a production-based incentive for residential and commercial members who generate energy from wind and micro-hydroelectric sources.	
Applicability		Hydroelectric systems up to 25kW, Chelan County PUD customers.	Small hydroelectric systems (up to 100kW) in OPALCO area.	
Amount of	Program units	Dependant on total sellers in program, varies by year.	\$1.50kWh (first year production only), up to \$4,500 max	
Incentive	\$/kWh	\$0.21/kWh (2010)	\$1.50/kWh	
Can this be used with other incentives?		Yes.	Yes but note that RECs are being surrendered here.	
Additional info		Program currently includes 5 kw of small hydropower. Additional benefits associated with net metering, but no additional payments.	To receive an incentive, members must sign an Agreement for Interconnection granting OPALCO rights to the system's Green Tags (renewable energy certificates).	
Source		PUD SNAP producer program: http://www.chelanpud.org/become-a-snap- producer.html	OPALCO: http://www.opalco.com/energy- services/renewable-generation/	

Appendix C Cost Estimating Method

The Hydropower Assessment Tool incorporates cost estimating functions for construction costs, other non-construction development costs, and for the various annual expenses that would be expected for operations. Construction costs include those for the major equipment components, ancillary mechanical and electrical equipment, and the civil works. In estimating the total cost of development, various costs are added to the construction cost such as those required for licensing and a menu of potentially required mitigation costs, depending on the specifics of the project. The annual operation and maintenance expenses encompass fees and taxes in addition to maintenance expenses and funds for major component replacement or repair.

Cost estimates for the individual components were based on studies previously performed by the Idaho National Engineering and Environmental Laboratory (INL) in 2003 and from more recent experience data. The INL analysis, as contained in "Estimation of Economic Parameters of U.S. Hydropower Resources", INL, 2003, was based on a survey of a wide range of cost components and a large number and sizes of projects and essentially involved a historical survey of costs associated with different existing facilities. These costs included licensing, construction, fish and wildlife mitigation, water quality monitoring, and operations and maintenance (O&M), as well as other categories of costs with the cost factors dependent on the size of the generating capacity of a proposed facility. INL acquired historical data on licensing, construction, and environmental mitigation from a number of sources including Federal Energy Regulatory Commission (FERC) environmental assessment and licensing documents, U.S. Energy Information Administration data, Electric Power Research Institute reports, and other reports on hydropower construction and environmental mitigation

Cost estimating equations were then derived through generalized least squares regression techniques where the only statistically significant independent variable for each cost estimator was plant capacity. All data in the INL report were escalated to 2002 dollars. For purposes of the current study, the cost estimating equations were updated to 2010 based on escalating the INL equations based on applicable USBR cost indices. For construction years beyond 2010, the assessment tool assumes an escalation of 2.5% and is applied to the total development cost.

C.1 Construction Costs

Total construction costs within the assessment tool include those for civil works, turbines, generators, balance of plant mechanical and electrical,

transformers and transmission lines. Other additions include contingences, sales taxes, and engineering and construction management. These construction costs reflect those that would be applicable to all projects but do not include potential mitigation measures which are subsequently included in the total development cost.

In estimating these costs, project information carried over from other worksheets within the model includes the plant capacity, turbine type, the design head, generator rotational speed, and transmission line length and voltage. Applicable cost equations are then applied to develop estimates for the specific cost categories. Applied to the summation of these costs is a contingency of 20%, a state sales tax based on the project location, and an assumed engineering and construction management cost of 15%. The associated equations developed are shown in Table C-1.

C.2 Total Development Costs

The total development cost includes the construction cost with the addition of a variety of other costs that are, or may be, required. Those additional costs applicable to all projects include any escalation to the 2010 time-frame, licensing costs, and the transmission-line right-of-way. Other costs that may apply, depending on the specific site, include fish passage requirements, historical and archaeological studies, water quality monitoring, and mitigation for fish and wildlife, and recreation. The requirements for specific sites are carried over to the cost estimating worksheet from previously input site specific information in the Start worksheet of the tool. Costs are all estimated based on the installed capacity of the project. The associated equations developed are shown in Table C-1.

C.3 Operation and Maintenance Costs

The operation and maintenance costs reflect a variety of expenses and fees expected for most projects. These expenses include fixed and variable O&M expenses, federal fees or charges from FERC or other agencies, charges for transmission of power generated or interconnection fees, insurance, taxes, overhead, and the long-term funding of major repairs. Fixed and variable O&M costs include water quality monitoring, other water expenses, hydraulic expenses, electric expenses, and rent. The estimates for these expenses are based on either the installed capacity or the total construction cost, with several costs estimated as fixed lump sums. The associated cost equations developed are shown in Table C-1.

Table C-1 Summary of Cost Estimating Equations

Cost Item	Cost Equation	Comment
Direct Construction Cost:	Sum of the following costs:	
Civil Works	Cost (\$) = (0.40) x (Turbine Cost + Generator Cost)	Applied cost factor based on experience and judgment for relatively small scale hydroelectric developments.
Turbine	Kaplan at less than or equal to 100-foot head: Cost (\$) = $(Capacity, MW)^{0.72} \times 909,000 \times 2.71826^{(-0.0013 \times design head)}$ Kaplan at greater than 100-foot head: Cost (\$) = $5,240,000 \times (Capacity, MW)^{0.72} \times Design Head^{-0.38}$ Francis at less than or equal to 100-foot head: Cost (\$) = $(Capacity, MW)^{0.71} \times 760,000 \times 2.71828^{(-0.003 \times Design Head)}$ Francis at greater than 100-foot head: Cost (\$) = $3,930,000 \times (Capacity, MW)^{0.71} \times (Design Head)^{-0.42}$ Pelton: Cost (\$) = $0.8 \times 3,930,000 \times (Capacity, MW)^{0.71} \times Design Head^{-0.42}$ Low Head: Cost (\$) = $(Capacity, MW)^{0.71} \times 760,000 \times 2.71828^{(-0.003 \times Design Head)^{-0.42}}$	 Kaplan and Francis turbine cost regression equations for heads greater than 100-feet escalated from 2002 dollars, in generalized turbine cost equations in 2003 INL report by 31% based on USBR cost indices. Modified regression equations developed for heads less than 100- feet. Pelton turbine costs estimated at 80% of Francis turbine with Low Head Turbine estimated at Francis turbine cost. The turbine equation is multiplied by the number of units. The hydropower generation calculations in the model all assume 1 unit.
Generator	Cost (\$) = 3,900,000 x (Capacity, MW) ^{0.65} x (Generator Speed, RPM) ^{-0.38}	Escalated from 2002 dollars, as developed in 2003 INL report for generalized generator cost, by 31% based on USBR cost indices. The generator equation is multiplied by the number of units. The hydropower generation calculations in the model all assume 1 unit.
Balance of Plant Mechanical	Cost (\$) = (0.20) x (Turbine Cost)	Applied cost factor based on experience and judgment for relatively small scale hydroelectric developments.

Table C-1

Summary of Cost Estimating Equations

Cost Item	Cost Equation	Comment
Balance of Plant Electrical	Cost (\$) = (0.35) x (Generator Cost)	Applied cost factor based on experience and judgment for relatively small scale hydroelectric developments.
Transformer	Cost (\$) = 14,866 – (0.0001 x (Capacity, kW/.9) ²) + (25.403 x (Capacity, kW/.9))	Cost regression equation developed based on recent experience, published recent bids, and kVA. Assumes 0.9 power factor.
	Cost (\$) = (Length, miles) x (100,000/mile if less then 69 kV)	
Transmission Line	Cost (\$) = (Length, miles) x (200,000/mile if less then or equal to 115 kV)	Estimated costs per mile based on current generic costs based on line capacity.
	Cost (\$) = (Length, miles) x (230,000/mile if greater then 115 kV)	
Contingency	Cost (\$) = (0.20) x (Sum of above Direct Construction Costs)	Assumed 20% of the total of the other direct construction costs not including the sales tax and E&CM.
Sales Tax	Cost (\$) = (State Rate %) x (Sum of Other Direct Construction Costs)	Tax rate applied to previous sum of construction costs based on project location.
Engineering and Construction Management	Cost (\$) = $(0.15) \times (Sum \text{ of Other Direct Construction Costs})$	Assumed 15% of the total of the other direct construction costs.
Total Development Cost:	Direct Construction Cost + the following costs:	
Licensing Cost	Cost (\$) = (780,000) x (Capacity, MW) ^{0.7}	Escalated from 2002 dollars, as developed in 2003 INL report for undeveloped sites, by 30% based on USBR cost indices.
Transmission Line Right-of-Way	Cost (\$) = (Length, miles) x (5,280x150/43,560)x(2,000)	Assumed 150-foot right-of-way with land cost of \$2,000 per acre.
Fish and Wildlife Mitigation	Cost (\$) = 390,000 x (Capacity, MW) ^{0.96}	Escalated from 2002 dollars, as developed in 2003 INL report for undeveloped sites, by 30% based on USBR cost indices.
Recreation Mitigation	Cost (\$) = 260,000 x (Capacity, MW) ^{0.97}	Escalated from 2002 dollars, as developed in 2003 INL report for

Table C-1 Summary of Cost Estimating Equations

Cost Item	Cost Equation	Comment
		undeveloped sites, by 30% based on USBR cost indices.
Historical & Archeological	Cost (\$) = 130,000 x (Capacity, MW) ^{0.72}	Escalated from 2002 dollars, as developed in 2003 INL report for undeveloped sites, by 30% based on USBR cost indices.
Water Quality Monitoring	Cost (\$) = 520,000 x (Capacity, MW) ^{0.44}	Escalated from 2002 dollars, as developed in 2003 INL report for undeveloped sites, by 30% based on USBR cost indices.
Fish Passage	Cost (\$) = 1,300,000 x (Capacity, MW) ^{0.56}	Escalated from 2002 dollars, as developed in 2003 INL report for undeveloped sites, by 30% based on USBR cost indices.
Operation and Maintenance Costs:	Sum of the following costs:	
Fixed Annual Operation & Maintenance	Cost (\$) = (26,000) x (Capacity, MW) ^{0.75}	Escalated from 2002 dollars, as developed in 2003 INL report for undeveloped sites, by 30% based on USBR cost indices.
Variable Operation and Maintenance	Cost (\$) = (26,000) x (Capacity, MW) ^{0.80}	Escalated from 2002 dollars, as developed in 2003 INL report for undeveloped sites, by 30% based on USBR cost indices.
FERC Charges	Cost (\$) = Installed Capacity (kW) + 112.5 x Annual Generation (GWh [gigawatt hours])	FERC Charges for 2010 as calculated under the Federal Power Act
Transmission / Interconnection	Cost (\$) = 10,000	Same as used in Plant Cost Estimator Model V1.0, USBR, 2007.
Insurance	Cost (\$) = (Total Direct Construction Cost) x (0.003)	Same as used in Plant Cost Estimator Model V1.0, USBR, 2007.
Taxes	Cost (\$) = (Total Direct Construction Cost) x (0.012)	Same as used in Plant Cost Estimator Model V1.0, USBR, 2007.
Management	Cost (\$) = (Total Direct Construction Cost) x (0.005)	Same as used in Plant Cost Estimator Model V1.0, USBR, 2007.

Table C-1

Summary of Cost Estimating Equations

Cost Item	Cost Equation	Comment
Major Repairs Fund	Cost (\$) = (Total Direct Construction Cost) x (0.001)	Same as used in Plant Cost Estimator Model V1.0, USBR, 2007.
Reclamation / Federal Administration	Cost (\$) = 10,000	Same as used in Plant Cost Estimator Model V1.0, USBR, 2007.

Appendix D Using the Hydropower Assessment Tool

Reclamation in conjunction with the contractors Anderson Engineering, CDM, and URS, developed the Hydropower Assessment Tool to estimate potential energy generation and economic benefits at the identified 530 Reclamation facilities. It is important to recognize that the tool has been developed using broad power and economic criteria, and it is only intended for preliminary assessments of potential hydropower sites. This tool cannot take the place of a detailed hydropower feasibility study.

Reclamation has made the Hydropower Assessment Tool available for public use with the following disclaimer statement:

"This is an "open source" software tool developed by the Bureau of Reclamation (Reclamation) and the contractor Anderson Engineering for the Hydropower Resource Assessment at Existing Reclamation Facilities Report, and it has been made available for public use. It is important to recognize that the tool has been developed using broad power and economic criteria, and it is only intended for preliminary assessments of potential hydropower sites. This tool cannot take the place of a detailed hydropower feasibility study. There are no warranties, express or implied, for the accuracy or completeness of or any resulting products from the utilization of the tool."

The Hydropower Assessment Tool is an Excel spreadsheet model with embedded macro functions programmed in Visual Basic. Microsoft Excel 2007 was used to develop the model. *To run the model successfully you must have a moderate working knowledge of Microsoft Excel.*

Chapter 3 of the report describes the assumptions built into the model; this appendix serves more as a user's manual for the Hydropower Assessment Tool.

D.1 Before You Begin

Enabling Macros: If you use Excel 2007, the program will not run until macros are enabled. To enable macros:

- 1. Go to Office Button at the upper left corner of the excel spreadsheet when you start Excel and click on Excel Options.
- 2. Under the Popular tab check the Show Developer Tab as shown in the screen shot below.

				00																	
G		8	1 - 61 -		Ŧ					Bool	<1 [Cor	npatibilit	y Mod	le] - Mid	rosof	t Excel					
9	2	Hom	e Ins	sert	Page I	ayout	Fo	rmulas	Data	R	eview	View	Dev	eloper	Ad	d-Ins	Acrobat				
	ste	*	Arial 18 Z	<u>u</u> -	• 10	• A & • A	A						6,	▼ 00.00. •.0	For	nditiona matting	* as Table	Cell • Styles •	P P	ormat *	Σ - /
Clip	ooal	rd 🖻			ont		- 64		Alignme	nt	Cal.	N	Imper	19			Styles			Cells	
		A1		- (f,																
-	-	A	В		С	D	2	E		F	G		Н	1	10	J	K		L	M	N
2	Ex	cel O	ptions																	?	×
3	1																				
4		Popula	ar		e	Cha	nge	the mos	t popula	ar opt	ions in	Excel.									
5		Formu	las		_																
6 7		Proofi	ng		То	options	for v	vorking v	vith Exce	I.											
8 9		Save				Show !	<u>M</u> ini T	oolbar o	n selectio	on 🛈											
10		Advan	ced			1.	- C - C - C - C - C - C - C - C - C - C	Preview () oper tab		han											
11 12	-	Custo	mize			Always				bone											
13		Add-Ir	ns		⊆	olor sche	me:	Blue	~												
14 15		Trust (Center		S	reenTip :	tyle:	Show	feature d	escript	ions in S	creenTips		*							
16		Resou	rces		c	reate lists	foru	use in sor	ts and fil	Isequ	ences:	Edit Cus	t <u>om Lis</u>	ts							
17		00X 2400	0.002																		
18 19					W	ien creati	ng ne	ew workt	ooks												
20					u	se this fo	nt:		Ar	ial				*							
21						ont size:				~				(Contraction)							2
22						511C 31 <u>2</u> C			10												

3. After the Show developer tab is checked the Developer tab will show up in the Office Ribbon. Go to the Developer tab click Macro security and then go to the Macro Settings tab. In the Macro Settings tab check the Enable all macros as shown in the screen shot.

Но	n g (° (° 21) ∓ ome Insert Page Lay	yout Formulas Data Review View Developer Add-Ins Acrobat
Visual Mac Basic	Macro Security Code	Arces Inset Design Mode 1 Run Dialog Controls XML
A1	→ (f _x	DEFGHIJKLMN
1	Trust Center	
3 4 5 6 7 8 9 9 10 11 12	Trusted Publishers Trusted Locations Add-ins ActiveX Settings Macro Settings Message Bar	Macro Settings For macros in documents not in a trusted location: Disable all macros without notification Disable all macros with notification Disable all macros except digitally signed macros Image: Enable all macros (not recommended; potentially dangerous code can run) Developer Macro Settings
13 14 15 16 17 18	External Content Privacy Options	✓ Trust access to the <u>V</u> BA project object model OK Cancel
9		
21		

Data required to run the tool: The following information will need to be entered into the model for the analysis:

- 1. Daily upstream dam or headwater water elevation and flow through the potential site. This information must be on a daily basis and must be for at least one full year (minimum 365 day). The user should preferably enter only even full year increments of data in order to have a non-biased representation of annual records. The recommended data period is either on a water year or calendar year basis. Although some "missing" and "bad data" checking capabilities are included in the model, the user should ensure the data entered are correct. An example set of data of select years for A.R. Bowman Dam are included in the model.
- 2. Daily headwater and tail water elevations entered should be referenced to the same period. Alternatively, if the tail water elevation is constant it can be entered as a constant/single value.
- 3. Transmission voltage and the estimated transmission line length also need to be entered to estimate the development cost of the project. The model will pick a default of 115 kV, but this value can be over ridden if site specific information exists. This must be done after the second model step has been completed.
- 4. Site location i.e. the State the facility is located in needs to be entered for estimating the power values and the green incentives revenue.
- 5. The user can select if various mitigation cost should be added to the total development cost of the site.

D.2 Tool Components

Available Worksheets

USBR Start Input Data Flow Exceedance Net Head Exceedance Turbine Type Generation Power Exceedance Plant Cost

The Hydropower Assessment Tool spreadsheet includes 15 separate tabs or worksheets, including several input data sheets, worksheets that contain information used as databases within the model, and worksheets that perform calculations. The calculations are based on the data input for a specific site and from the internal databases. The worksheets are set up in user friendly and logical sequence with only 2 worksheets requiring input from the user. This section summarizes the worksheets in the model; the bold headers below are the actual names of the worksheets in the model.

• **USBR** - includes the Disclaimer Statement and a link to the Start worksheet.

- **Start** includes instructions for use of the model and cells where non-hydrologic inputs (state, transmission line voltage and distance, and constraints) are made. This worksheet also includes the command buttons to run the model. There are three steps to running the model, which should be run in sequence from top to bottom. The model run is complete when the Results worksheet is displayed.
- **Input Data** where the daily flow data, head water and tail water elevation is input. A minimum of 1 year of data is required and there can be no blanks in the sequence.
- Flow Exceedance develops and displays the flow duration curve based on input flow data.
- Net Head Exceedance develops and displays the net head duration curve based on input head water and tail water elevation data.
- **Turbine Type** includes the turbine selection matrix (Figure 3-4) and selects a turbine based on 30 percent flow and net head exceedance. Also includes Pelton, Francis, and Kaplan turbine efficiencies tables based on Hill diagram performance curves and a generator speed matrix used in the cost calculations.
- **Generation** performs the power and energy generation calculations.
- **Power Exceedance** shows the power exceedance curve calculated based on generation calculations in the previous worksheet.
- **Plant Cost** calculates cost estimates for construction, total development cost, and estimated annual costs.
- BC Ratio and IRR presents the stream of benefits and costs over the 50-year period of analysis and calculates the benefit cost ratio and IRR.
- **Results** presents a comprehensive summary of results of energy generation calculation and the economic analysis.
- Other State allows the user to input the green incentives and price projection values for states outside of the 17 western states in Reclamation's regions.
- **Price Projections** includes the monthly price forecasts through 2060 for each state included in the analysis to calculate power generation benefits.

- **Green Incentives** includes the performance-based green incentive values used for each state to calculate green incentive benefits.
- **Templates** show the input data required in the model, in the appropriate format to run the model.

Start and Input Tab

The Start tab is where the program execution occurs. Most of the user interaction will occur in the start tab. The worksheet contains the instructions for the model. There are three buttons to be clicked in the order described below to complete the three steps of the analysis. A new user should follow the instructions provided in the Start tab and shown in Figure D-1.

Appendix D Using the Hydropower Assessment Tool

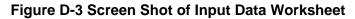

	Read and F	ollow the Di	rections Belo	w		
)ata" tabs. Manually	scan the input data "Preprocess Data" I	for bad data poi	nts or missing da	ta.		
	Ŷ					
Prepr	rocess Data		eprocessing Com	plete		
	Ŷ					
hart" butto	correct the appropriat on again to produce a	new Flow Exce	eedance Chart			\mathbf{N}
.lf no chan	ges were made to In			-/		Message Boxes: Error.
				\neg		Message Boxes: Error, Warning or process
Produce	Exceedance Chart					Warning or process completion messages appear in these message
Produce 8. Review value of the Exceedar cell B17. 9. Review value of the flow can be 10. Press	Exceedance Chart	value for Turbine ad is set at 30% ine design head value for Turbine at 30% of Flow in cell B18.	Design Head (B' of Net Head Ex value can be over Design Flow (B1 Exceedance. De	eedance from I erridden by user 8). The defalul fault turbine de	Net r in It ssign	Warning or process completion messages
8. Review value of t Exceedar cell B17. 9. Review value of t flow can b 10. Press	Exceedance Chart Exceedance Chart the model selected whe Turbine Design He nce chart. Default turb the model selected whe Design Flow is set be overridden by user "Complete Analysis"	value for Turbine ad is set at 30% ine design head value for Turbine at 30% of Flow in cell B18.	Design Head (B' of Net Head Ex value can be over Design Flow (B1 Exceedance. De	eedance from I erridden by user 8). The defalul fault turbine de	Net r in It ssign	Warning or process completion messages appear in these message
Produce 8. Review value of tl Exceedar cell B17. 9. Review value of tl flow can b 10. Press and benefit	Exceedance Chart Exceedance Chart the model selected whe Turbine Design He nce chart. Default turb the Design Flow is set be overridden by user "Complete Analysis of fit-cost analysis.	value for Turbine ad is set at 30% ine design head value for Turbine at 30% of Flow in cell B18. Calculation" butt	Design Head (B' of Net Head Ex value can be over Design Flow (B1 Exceedance. De	eedance from I erridden by user 8). The defalul fault turbine de	Net r in It ssign	Warning or process completion messages appear in these message

Figure D-1 Screen Shot of Start Tab-Program Execution Flow Chart

Bureau of Reclamation - Hyd	Iropower Assessment Tool
Facility Name	
Agency	
Analysis Performed by	
Project Location (State):	-
indicates required user inputs	
Data Analysis:	
Data Set	yrs
Max Head	ft
Min Head	ft
Max Flow	cfs
Min Flow	cfs
Turbine Selection Input/Analysis:	
Turbine Design Head	ft
Turbine Design flow	cfs
Turbine Type	-
Generator Speed	rpm
Max Generating Head Limit	ft
Min Generating Head Limit	ft
Max Generating Flow Limit	cfs
Min Generating Flow Limit	cfs
	ded value; Value can be overridden by use
Powerplant Cost Estimate Input:	_ kV
Transmission Voltage T-Line Length	miles
Fish and Wildlife Mitigation	
Recreation Mitigation	-
Historical & Archaeological	-
Water Quality Monitoring	
Fish Passage Required	-
indicates required user inputs	
indicates the default/model recommende	ed value; Value can be overridden by user

Figure D-2 Screen Shot of Start Tab-Data Input Windows

	G18	- ()	f_{x}								
	A	В	С	D	E	F	G	Н	I	J	K
1	- Input D	ata									
2	Data Source -										
3	Date (m/d/y)	Headwater Elevation (ft)	Tailwater Elevation (ft)	Net head (ft)	Flow (cfs)						
4							Constant Tailwater Elevation		ft		
5											
6											
7											
8											
9							Notes for user:				
10							 Input daily head, tailwater elevation 	on and flow dat	a into columns A,E	3,C and E.	
11							2.If tailwater level is constant, it can override the values entered in the	Tailwater Eleva	tion column (colur	nn C).	
12							3.Net head will be calculated after	pressing "Prep	process Data" butt	on on Start	tab.
13											
14											
15											

D.3 Using the Tool

1. Start by Saving the Workbook to a Different Name

Save the "Generic" workbook under a different name that preferably helps to identify the project. To save the workbook under s different name go to <u>File</u> > <u>Save As</u>, enter the desired name for the file and then click the <u>Save</u> button.

2. Entering Data

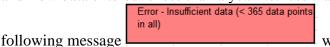
Enter data into the required fields highlighted in yellow in the Start tab (See Figure D-2). Cells highlighted in blue are optional entries, the model will use the default value unless the user overrides the default value. If the site being analyzed lies outside of Reclamation's regions (i.e. it is not one of 17 western states in the drop down menu), then the user can use the "Other" state from the drop down menu. If the Other State option is selected then the user needs to provide the green incentive and power prices for the site in the "Other State" tab.

Daily headwater water elevation and flow through the potential site should be entered in the Input data tab (See Figure D-3). Tail water elevation can be entered as daily values or a constant elevation can be entered in the input data tab (See Figure D-3).

Input data (Date, Head, Flow, and Location) must be entered or transferred into the proper input columns/cells for the program to produce accurate results. The model will not run if there are blank cells or bad data in the input data columns.

3. Running the Analysis

The analysis runs in three steps, described below.


Step 1: Preprocess Data

After entering all the required user input data into the model, the user needs to follow the instructions provided in the Start tab to progressively execute the analysis. The model has an example data built in to provide initial understanding of how the tool functions.

Use Demonstration Data

To use the demonstration data, click on the AR. Bowman Dam button in the Start tab. The required user input information for Arthur R. Bowman Dam in Oregon will be transferred into the respective input fields. The user can now run the model with the example site data. To input new data, the user will need to Clear Charts – Start Over, and input new data in the process described above.

To start the analysis, the user should click on the Preprocess Data button. The model at this point will check if all the required data entries have been made and calculate net head using the headwater and tail water input data. The model has some intrinsic data checking capabilities. If the data entry is not complete an error message will show up in the message box next to the command button. Any missing data is considered an error and the model cannot run without filling out the missing information. For example, if the daily head and flow data entered is less than a year i.e. less than 365 data points, the

will show up in the message

box adjacent to the Preprocess Data button.

A minimum of 1 year of data is required to run the model but the confidence in the results of the model increases with more data points. If the data set has less than 3 years of data a warning message will show up

Warning - Insufficient data (< 3 years), Low Confidence

indicating low confidence. The user can continue to run the model with existing data or try to get more data to increase the confidence in the results.

When more than 3 years of complete data is entered and the preprocessing step is complete the following message will show up in the message box

Preprocessing Complete

to indicate the completion of the preprocessing step

in the analysis.

Step 2: Produce Exceedance Chart

Click on the Produce Exceedance Chart button in the Start tab to complete the second step of the analysis. At this step, the tool will create exceedance charts using the flow and net head data. Turbines will be sized using the flow exceedance and net head exceedance curves. Turbine design head and flow is defaulted to 30% exceedance level. These values can be overridden by the user in the Start tab (See Figure D-2) after the completion of the preprocess step. The tool will use

the new overridden values in the final step of the analysis. If the design flow is less than 0.5 cfs the following error message will show up

Error - Flow too low for hydropower Development

indicating the analysis cannot be completed as the site does not have any hydropower potential at the 30 percent exceedance level. At this time the user can change the design head and flow on the Start tab. The Flow Exceedance and Net Head Exceedance worksheets have the flow and head exceedance curves in which the user can find design capacities at alternate percentages (i.e., 10, 15, 20, 25, etc., percent exceedance).

After the design flow and head are calculated for each site, a specific turbine type is selected for the site using the design head and design flow. The turbine type chosen by the model is based on the turbine selection matrix shown in the Turbine Type worksheet assuming a single turbine unit for the project. The user can change the selected turbine type in the Start tab. The change should be completed before the last step of the analysis. Again, any changes to the design head and design flow (i.e., if the user wants to run a different exceedance level than 30 percent) should be done at this time, before the last step of the analysis. If changing design head and design flow, the user should also note the turbine type selected at consider if a change in turbine type is appropriate. The transmission line voltage should also be selected after this step is complete.

Note: if the user chooses to run alternate design heads and design flows on a single site, the "Clear Charts – Start Over" button on the Start tab should be pressed after each model run is complete.

Step 3: Complete Analysis Calculations

Click on the <u>Complete Analysis Calculation</u> button to complete the analysis. If the user picked the "Other" state option and failed to provide the green incentive and power prices in the "Other State" tab the following error message will show

up indicating the missing information and the analysis cannot be completed.

Note that this step in the analysis includes many calculations which might slow down the computer. It is suggested not to have multiple Excel file or large files open while this step runs.

The calculations include:

• **Power and Energy Calculations:** The calculations occur in the Generation worksheet. Using available head and flow data, selected design head, flow, turbine type and efficiency, the model estimates average monthly and annual power generation at each site. The available head and flow data is converted to generating head and flow

data if the available flow and head meets the design limitations i.e. if the available flow is greater than the maximum allowable design flow capacity, the flow is constrained to the upper (Qmax). Relevant information is noted in the Notes column in the Generation tab (See Figure D-4). This tab also has two summary tables with information regarding the plant generation capacity and the monthly/annual production rates (See Figure D-4). The model assumes that the plant generation and development costs are calculated based on a single turbine plant.

 Cost Calculations: Cost calculations occur in the Plant Cost worksheet (See Figure D-5). The cost analysis incorporated construction cost, other non-construction development costs (i.e., licensing/permitting costs) and O&M costs. Information in the Site Information table (Rows 6 to 23 in Figure D-5) shows the site specific information that is used in the cost analysis. Most of this information is imported from the Start or Input data tab or is based on the calculations using the information provided in the Start or Input Data worksheets.

The total construction cost, development costs and annual O&M expense tables have the breakdown of the cost items included to calculate the total development/construction cost and Annual O&M expenses. Cells highlighted in light green in the Plant Cost worksheet can be updated or changed by the user.

Date m/d/y) 1/1/2005 1/2/2005 1/3/2005	Elevation (ft) 3234.64	Elevation	Net head	Flow		Head	Generating Flo v	Power	Day Energy					
1/2/2005	2024.04	(ft)	(ft)	(cfs)	Notes 🔽	(ft) 🔽	(cfs) 🔻	(k¥) 🔻	(kVH 🔻	Plant Gene	ration S	ummary:		
1/2/2005		3052.60	182.04	271	Q>Qmax,	182.04	264.00	3,474	83,373	Plant Desig				3,293
11212005	3234.72	3052.60	182.12	275	Q>Qmax,	182.12	264.00	3,475	83,410	Number of I		., (,		10,592
103720031	3234.83	3052.60	182.23	287	Q>Qmax,	182.23	264.00	3,478	83,460	Data Years				29.00
1/4/2005	3234.90	3052.60	182.30	288	Q>Qmax,	182.30	264.00	3,479	83,492	Total Data	Period Er	nergų (kVH		540,722,417
1/5/2005	3234.93	3052.60	182.33	287	Q>Qmax,	182.33	264.00	3,479	83,506	Average Pla	ant Capa	city (kV)		2127
1/6/2005	3234.96	3052.60	182.36	290	Q>Qmax,	182.36	264.00	3,480	83,520	Plant Peak				3,628
1/7/2005	3234.95	3052.60	182.35	345	Q>Qmax,	182.35	264.00	3,480	83,515	Plant Facto	r -			0.646
1/8/2005	3186.98	3052.60	134.38	52	Q <qmin,< td=""><td>134.38</td><td>0.00</td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td></td></qmin,<>	134.38	0.00	0	0					
1/9/2005	3186.97	3052.60	134.37	52	Q <qmin,< td=""><td>134.37</td><td>0.00</td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td></td></qmin,<>	134.37	0.00	0	0					
1/10/2005	3186.87	3052.60	134.27	52	Q <qmin,< td=""><td>134.27</td><td>0.00</td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td></td></qmin,<>	134.27	0.00	0	0					
1/11/2005	3186.86	3052.60	134.26	52	Q <qmin,< td=""><td>134.26</td><td>0.00</td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td></td></qmin,<>	134.26	0.00	0	0					
1/12/2005	3186.86	3052.60	134.26	52	Q <qmin,< td=""><td>134.26</td><td>0.00</td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td></td></qmin,<>	134.26	0.00	0	0					
1/13/2005	3186.86	3052.60	134.26	52	Q <qmin,< td=""><td>134.26</td><td>0.00</td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td></td></qmin,<>	134.26	0.00	0	0					
1/14/2005	3164.75	3052.60	112.15	33	H <hmin, q<qmin,<="" td=""><td>0.00</td><td>0.00</td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td></td></hmin,>	0.00	0.00	0	0					
1/15/2005	3164.66	3052.60	112.06	33	H <hmin, q<qmin,<="" td=""><td>0.00</td><td>0.00</td><td>0</td><td>0</td><td>Plant Mont</td><td>hly Gene</td><td>eration:</td><td></td><td></td></hmin,>	0.00	0.00	0	0	Plant Mont	hly Gene	eration:		
1/16/2005	3164.61	3052.60	112.01	33	H <hmin, q<qmin,<="" td=""><td>0.00</td><td>0.00</td><td>0</td><td>0</td><td></td><td>Days</td><td>Average</td><td>Average</td><td></td></hmin,>	0.00	0.00	0	0		Days	Average	Average	
1/17/2005	3162.46	3052.60	109.86	86	H <hmin,< td=""><td>0.00</td><td>86.12</td><td>0</td><td>0</td><td>Months</td><td>with</td><td>Capacity</td><td>Energy</td><td></td></hmin,<>	0.00	86.12	0	0	Months	with	Capacity	Energy	
1/18/2005	3162.61	3052.60	110.01	107	H <hmin,< td=""><td>0.00</td><td>107.34</td><td>0</td><td>0</td><td></td><td>Data</td><td>(kV)</td><td>(MVH)</td><td></td></hmin,<>	0.00	107.34	0	0		Data	(kV)	(MVH)	
1/19/2005	3162.77	3052.60	110.17	107	H <hmin,< td=""><td>0.00</td><td>107.34</td><td>0</td><td>0</td><td>January</td><td>899</td><td>1,215</td><td>875</td><td></td></hmin,<>	0.00	107.34	0	0	January	899	1,215	875	
1/20/2005	3163.00	3052.60	110.40	108	H <hmin,< td=""><td>0.00</td><td>107.57</td><td>0</td><td>0</td><td>February"</td><td>819</td><td>1,625</td><td>1,092</td><td></td></hmin,<>	0.00	107.57	0	0	February"	819	1,625	1,092	
1/21/2005	3217.92	3052.60	165.32	224		165.32	224.26	2,770	66,486	March	899	1,935	1,393	
1/22/2005	3218.14	3052.60	165.54	224		165.54	224.26	2,774	66,574	April	870	2,763	1,989	
1/23/2005	3218.41	3052.60	165.81	224		165.81	224.26	2,778	66,683	Mag	899	3,126	2,250	
1/24/2005	3218.59	3052.60	165.99	224		165.99	224.26	2,781	66,755	June	870	3,102	2,233	
1/25/2005	3218.80	3052.60	166.20	224		166.20	224.26	2,785	66,840	July	899	2,986	2,150	
1/26/2005	3218.98	3052.60	166.38	224		166.38	224.26	2,788	66,912	August	899	2,843	2,047	
1/27/2005	3219.18	3052.60	166.58	224		166.58	224.26	2,791	66,993	September	870	2,387	1,718	
1/28/2005	3219.39	3052.60	166.79	224		166.79	224.26	2,795	67,077	October	899	1,564	1,126	
1/29/2005	3219.61	3052.60	167.01	224		167.01	224.26	2,799	67,166	November	870	848	611	
1/30/2005	3219.83	3052.60	167.23	224		167.23	224.26	2,802	67,254	December	899	1,106	796	
1/31/2005	3220.03	3052.60	167.43	224		167.43	224.26	2,806	67,335	Annual"			18,282	
2/1/2005	3220.22	3052.60	167.62	224		167.62	224.26	2,809	67,411	*For non-leap	year			
2/2/2005	3220.38	3052.60	167.78	224		167.78	224.26	2,811	67,475					
2/3/2005	3220.64	3052.60	168.04	224		168.04	224.26	2,816	67,580					
2/4/2005	3220.83	3052.60	168.23	224		168.23	224.26	2,819	67,656					

Figure D-4 Screen Shot of Generation Worksheet

It Capacity (MV) 3.29 It Capacity (MV) 3.23 It Capacity (MV) 3.60 It Tarsformer 5.50 It Capacity (MV) 4.18 It Capacity (MV) 5.00 It Capacity (MV) 5.00 It Capacity (MV) 5.00 It Capacity (MV) 0.00 I				Single	e-Unit Plant Only
It Capacity (MV) 3.29 It Capacity (MV) 3.23 It Capacity (MV) 3.60 It make Generation Votage (V) 4.16 It make Generation Votage (V) 4.00 It make Generation Votage (V) No It make Generation Votage (V) No <th></th> <th></th> <th></th> <th></th> <th></th>					
if Capacity (MVr) 3.23 meter of Mais 1 ant Capacity (MVr) 2.23 tains Capacity (MVr) 2.23 tains Capacity (MVr) 2.23 tains Capacity (MVr) 2.23 tains Capacity (MVr) 2.33 tains Capacity (MVr) 2.33 tains Capacity (MVr) 4.16 assert capacity (MVr) 4.16 is Speed (PrM) 600 initiated Generation Voltage (KVr) 4.16 assard field (Ministation (YestNo) No vi Transformer YES hand Wdlife Ministation (YestNo) No cortact & A cholologial (YestNo) No screation Ministation (YestNo) No at Direct Construction Cost 5.246.287 at Orist 7/0.248 at Direct Construction Cost 5.246.287 at Orist 7/0.248 at Orist 7/0.248 at Direct Construction Cost 5.246.287 at Orist 7/0.248 at Direct Construction Cost 5.246.287 at Direct Construction Cost 7/1.2489 tat Direct Const	Undeveloped Site:			State Sales Ta	ax Rate:
Base of Uklar 1 Cationnia 2.25 and Casaday (MV) 2.23 Colorado 2.26 infore Figue Francis Colorado 2.26 infore Figue Francis Colorado 2.26 infore Figue Francis Colorado 2.26 isgent HerM 10 6.00 Kanasa 5.30 immade Generation Voltage (KV) 4.16 North Dakota 5.00 immade Mathematic (Versitio) No North Dakota 5.00 immade Mathematic (Versitio) No Oregon 0.00 total Miller Milgation (Versitio) No Oregon 0.00 total A schelologial (Versitio) No Texas 6.25 in advalue Miller Milgation (Versitio) No Texas 6.25 in advalue Miller Milgation (Versitio) No Texas 6.25 in advalue Monitoring (Versitio) No Texas 6.25 in advalue Monitoring (Versitio) No Texas 6.25 in advalue Miler Mil	Site Information			State	State Sales Tax (%)
and Capacity (MV) 2.29 think Type Francit think Type Francit it Speed (F) 172.56 it Speed (F) 172.56 it Speed (F) 000 intract Generation Votage (KV) 4.16 naminision Votage (KV-SIIS) 116 intract Generation Votage (KV-SIIS) 106 intract Generation Votage (KV-SIIS) 100 intract Generation Votage (KV-SIIS) 100 intract Generation Miligation (YearNo) No intract Generation Miligation (YearNo) 100 intract Generation Miligation (YearNo) 200 intract Generation Votage (CO) 100 intract Ge	Unit Capacity (MW)	3.29		Arizona	5.60
The Type Francis Francis Kanaas 6.00 signified (f) 17258 Kanaas 5.30 signified (f) 17258 Kanaas 5.30 signified (f) 100 Montana 0.00 itrade (derevation Votage (KV) 4.16 Nevada 6.85 itrade (f) 100 Nevada 6.85 itrade (f) 100 Nevada 6.85 itrade (f) 100 No Otherasta 5.00 vitradite (Migation (Ves/NO) No Otherasta 6.25 vitradoring (Ves/NO) No Texas 6.25 vitradoring (f) 1002246 Notes for user: 1. Costs are calculated after pressing "Completer function"	Number of Units	1		California	
sign-Had (ft) 172.56 Speed (FPM) 600 instrated Generation Voltage (KV) 4.16 narmission Voltage (KV- \$10) 10 instrated Generation Voltage (KV) 4.16 narmission Voltage (KV- \$10) 10 instrate Generation Voltage (KV- \$10) 10 wit TainScorner YES hand Wildle Moligation (Yes/No) No torotal & Archologial (Yes/No) No <td>Plant Capacity (MW)</td> <td>3.29</td> <td>(</td> <td>Colorado</td> <td>2.90</td>	Plant Capacity (MW)	3.29	(Colorado	2.90
Speed (FPM) 600 Unrated Generation Votage (KV) 4.16 namistics of Votage (KV-68,116) 116 Inne Length (miles) 3.80 W Transformer YES North Data (KV-68,116) 116 Inne Length (miles) 3.80 W Transformer YES North Data (KV-68,116) No State State State (V) No State State Construction Cost 5,248,287 Vil Vorks 718,384 State Direct Construction Cost 5,248,287 Vil Vorks 718,384 Intele Construction Cost 5,248,287 Vil Vorks 718,384 Intele Construction Cost 5,248,287 Vil Vorks 718,384 Intelectrical 260,536 Intelectrical 260,536 Intelectrical 260,536 Intelectrical 260,536 Stat Exeabion factor from 200 0 </td <td>Turbine Type</td> <td></td> <td></td> <td></td> <td></td>	Turbine Type				
timused Generation Voltage (KV) 4.16 naminisation Voltage (KV-8.105) 116 inclusing (KV-8.105) 116 inclusing (KV-8.105) 106 w Transformer YES ind vilidite (Mitgation (Yez/NO) No correction Mitgation (Yez/NO) No correction (Signal (Yes/NO) No toroid als Archiological (Yes/NO) No tat Direct Construction Cost 5,245,287 vil/ Works 786,384 trbine(j) 1052,846 trbine(j) 1052,846 trbine(c) 743,388 trbine(c) 786,332 tes Taxes 0 uine 7173,609 stat Development Cost 5,245,287 time 743,388 there allow altor torm 200 0 tes Taxes 0 time 7173,6	Design Head (ft)	172.56		Kansas	
Instruction Voltage (KV-68)(15) 115 Ine Length (miles) 3.60 New Mexico 5.00 Ine Length (miles) 3.60 Ine Length (miles) 3.60 Ine Length (miles) 3.60 Ine Length (miles) 3.60 Ine Length (miles) 0.60 In And Viellie Miligation (Yes/No) No Station (Yes/No) No Inter Construction Cost 5.246,287 Viel Vorks 778.834 Inter Construction Cost 5.246,287 Viel Vorks 778.369 St Escalation Factor from 200 0 Ine Table Store State 7,	Unit Speed (RPM)				
Line Length (mate) 3.80 w Transformer YES hand Vidite Mitigation (Yes/No) No creation Mitigation (Yes/No) No stal Direct Construction Cost 5.246.287 vi Works 7(88.84 rbine(s) 1062.246 vi Works 7(88.84 vi Morks 7(8.84 viance of Plant Mechanical 20.0568 stal Direct Construction Cost 5.246.287 <t< td=""><td>Estimated Generation Voltage (KV)</td><td></td><td></td><td></td><td></td></t<>	Estimated Generation Voltage (KV)				
W Transformer YES North Dakota 5.00 ih and Vildie Mitigation (Yes/No) No Oklahoma 4.50 otreation Mitigation (Yes/No) No Oclahoma 4.50 otreation Mitigation (Yes/No) No South Dakota 4.00 stote at A archalogical (Yes/No) No Feesage Pequited (Yes/No) No stote at A archalogical (Yes/No) No Utah 4.70 via Call Direct Construction Cost 5.246,287 Washington 6.50 stal Direct Construction Cost 5.246,287 Washington 6.50 stal Direct Construction Cost 5.246,287 Notes for user: 1. Costs are calculated after pressing "Complete tailor(s) lance of Plant Mechanical 200,598 Increation Mitigation 6.50 ui nee 700,000 Feesage 0 1.052,946 onlingency (20%) 760,332 Feesage 0 1.052,946 onlingency (20%) 760,332 Feesage 0 1.052,946 ontraise of Plant Electrical 200,598 Feesage 0 1.052,9	Transmission Voltage (KV-69,115)				
hand Wildlie Milgation (Yes/No) No creation Milgation (Yes/No) No ter Qualty Monitoring (Yes/No) No the Sassa Fequeta (Yes/No) No the Sassa Fequeta (Yes/No) No the Sassa Fequeta (Yes/No) No tab Sast Tas Rate (x) 0.000 with Oktas 708.981 with Works 708.982 with Works 708.982 w	T-Line Length (miles)				
oreadon Mitigation (Yes/No) No storiotal & Archiological (Yes/No) No the Passage Required (Yes/No) No the Passage Required (Yes/No) No the Passage Required (Yes/No) No onstruction Year 2010 Not a Sales Tal Pate (x) 0.00 onstruction Year 2010 Not in the Sales Tal Pate (x) 0.00 onstruction Year 2010 Not in the Sales Tal Pate (x) 0.00 onstruction Year 2010 Not in the Sales Tal Pate (x) 0.00 onstruction Year 2010 Not in the Sales Tal Pate (x) 0.00 onstruction Year 2010 Not in the Sales Tal Pate (x) 0.00 onstruction Year 2010 Not in the Sales Tal Pate (x) 0.00 onstruction Year 2010 Not in the Sales Tal Pate (x) 0.00 onstruction Year 2010 Notes for user: 1. Costs are calculated after pressing "Complet Constance" 394.425 on the Sales Tal Pate 20000 ontigeney (20%) 700.332 les Tates 0 0 ontigeney (20%) 700.332 les Tates 0 0 other and Cost (5246.287 Une Right-of-Wag 130.309 bit Secalation factor from 2010 0 toreation Cost 5246.287 on the Quality Montoring 0 bit oreation Mitigation 0 bit of Cost (Ti786.412 bit Red Construction Cost 5246.287 bit Red Gama Cost (Ti786.412 bit Red Gama Cost (Tir86.412 bit Red Gama Cost (Cost 15746.287 bit Red Gama Cost (Cost 15747 ansmission / Interconnection 10,000 bit Red Gama Cost (Cost 15748 bit Red Cost 15748 bit Red Gama Cost (Cost 15748 bit Red Cost 15748 bit R	New Transformer				
storical & Archiological (Yes/No) No ster Quality Monitoring (Yes/No) No tere Quality Monitoring (Yes/No) No ate Sales Tax Rate (x) 0.00 onstruction Year 2010 Stal Direct Construction Cost 5,246,287 ull Works 718,834 trible(s) 1052,846 inerator(s) 744,388 lance of Plant Mechanical 210,659 class are calculated after pressing "Complete Calculated after pressing "Complet	Fish and Wildlife Mitigation (Yes/No)				
ater Quality Monitoring (YesrNo) No The Bassage Required (YesrNo) No Bith Passage Required (YesrNo) No Utah 4.70 Wyoming 4.00 washington 6.50 Value 718.384 Innect Construction Cost 5.246.287 Value 718.384 Innect Construction Cost 5.246.287 Value 718.384 Innect Construction Cost 5.246.287 Value 718.384 Innect Of Plant Mechanical 200.669 Iannee of Plant Mechanical 200.669 Inne of Plant Electrical 260.556 Inne of Plant Electrical 94.425 Inne (Electrical 94.425 Inne (Electrical 94.425 Inne (Electrical 94.425 Inne (Electrical 94.425 Value 9 Value 84.288 Value 9 Value 9 Value 9 Value 178.442 Value 178.442 Value 178.442 Value 10 Value 10 Value 10 Value 10 <				-	
hP assage Regulated (Yes/No) No ate Sales Tar Rate (%) 0.00 nestruction Year 2010 ata Direct Construction Cost 5,245,287 atal Direct Construction Cost 5,246,287 atal Direct Construction Cost 7,143,88 ataneo of Plant Mechanical 260,536 alance of Plant Attributed Target (%) 760,032 line 720,000 ontingeneng (20%) 760,032 line Flant-0*/vaj 130,309 stal Development Costs 7,173,609 stal Direct Construction Cost 5,246,287 ater Guality Monitoring 0 the Violitife Mitigation 0 the Passage 0 the Passage 63,567					
ate Sales Tar Rate (2) 0.00 nastruction Year 2010 Stal Direct Construction Cost 5.245.287 alance of Plant Mechanical 210.569 alance of Plant Mechanical 210.569 alance of Plant Mechanical 210.569 alance of Plant Mechanical 200.000 alance of Plant Mechanical 200.536 ansformer 94.425 uine 720.000 ontingency (202) 760.332 piestring and CM (15x) 684.288 stal Development Cost 7.173.609 stat Development Cost 7.273.609 stat Development Cost 5.246.287 inance Green 1.786.412 tata Direct Construction Cost 5.246.287 ince Right-Orl-Vag 100.008 storical & Archiological 0 ot evel and Miller Milgation 0 ber (define) 0 her (define) 0 numal D&M Expense 268.236 iced Annual DBM 63.857 nable OM 67.460 FRC Charges 5.047 angement / Office / Overhead 26.231 icel fielp 0 icel fielp 0 icel fielp 0 icel fielp					
nstruction Year 2010 Stal Direct Construction Cost 5,246,287 vil Works 718,894 trbine[s] 1052,846 interactor[s] 210,589 lance of Plant Mechanical 210,589 lance of Plant Mechanical 280,596 ansformer 94,425 Line 720,000 vil works armore detailed cost information val formula's highlighted in light green can be updated ansformer 94,425 Line 720,000 vil works for user: 1. Costs are calculated docst information val formula's highlighted in light green can be updated ansformer 94,425 Line 720,000 vil works for user: 1. Costs are calculated docst information val formula's highlighted in light green can be updated ansformer 94,425 Line 720,000 vil works for user: 2. If user has more detailed cost information val formula's highlighted in light green can be updated ansformer 94,425 vil Development Costs 7,173,609 vil Ecalation factor from 2010 0 vir Ecselation factor from 2010 0 vir Ecselation factor from 2010 0 tere Quily Monitoring 0 tere Quily Monitoring 10,000 tere quily Monitoring 10,000 10,0					
Stal Direct Construction Cost 5,246,287 Ui Works 718,894 trbine(s) 1062,246 nereator(s) 744,388 lance of Plant Mechanical 210,569 lance of Plant Electrical 260,536 ansformer 94,425 Line 720,000 primerator(s) 7173,609 gineering and CM (15%) 684,298 stal Direct Construction Cost 7,173,609 gineering and CM (15%) 684,298 stal Direct Construction Cost 7,173,609 stal Direct Construction Cost 5,246,287 Line Right-of-Way 130,309 stal Direct Construction Cost 5,246,287 Line Right-of-Way 130,309 storical & Archiological 0 ot the Passane 0 ber (define) 0 nated ObM 62,557 riable ObM 62,457 riable ObM 62,457 riable ObM 62,557 riable ObM 62,555 anagement / Office / Overhead 62,855	State Sales Tax Rate (%)				
vill Vorks 718,894 htbine[s] 1,052,846 inerrator(s) 744,388 lance of Plant Mechanical 20,569 lance of Plant Electrical 280,536 ansformer 94,425 Line 720,000 nningenoy (20%) 760,332 les Taxes 0 gineering and CM (15%) 684,298 stal Development Costs 7,173,609 stat Bevelopment Costs 7,173,609 stat Bevelopment Costs 7,173,609 stat Bevelopment Costs 1,786,412 stal Direct Construction Cost 5,246,287 Line Fight-of-Way 130,903 stat Revelopment Cost 5,246,287 Line Right-of-Way 130,903 stat Revelopment Cost 5,246,287 Line Right-of-Way 100,903 storical & Archiological 0 ber (define) 0 her (define) 0 nual O&M 63,567 riable D&M 63,567 riable D&M 63,567 riable D&M 63,567 riable D&M 6	Construction Year	2010		Washington	6.50
vill Vorks 718,894 htbine[s] 1,052,846 inerrator(s) 744,388 lance of Plant Mechanical 20,569 lance of Plant Electrical 280,536 ansformer 94,425 Line 720,000 nningenoy (20%) 760,332 les Taxes 0 gineering and CM (15%) 684,298 stal Development Costs 7,173,609 stat Bevelopment Costs 7,173,609 stat Bevelopment Costs 7,173,609 stat Bevelopment Costs 1,786,412 stal Direct Construction Cost 5,246,287 Line Fight-of-Way 130,903 stat Revelopment Cost 5,246,287 Line Right-of-Way 130,903 stat Revelopment Cost 5,246,287 Line Right-of-Way 100,903 storical & Archiological 0 ber (define) 0 her (define) 0 nual O&M 63,567 riable D&M 63,567 riable D&M 63,567 riable D&M 63,567 riable D&M 6					
rbine(s) 1052,846 rherator(s) 744,388 lance of Plant Mechanical 210,569 lance of Plant Electrical 260,536 lance of Plant Electrical 266,236 lance of Plant Electrical 266,236 lect Annual ObM 63,557 riable ObM 67,460 life C Charges 5047 anarmission / Interconnection 10,000 lance of Plant Plant Plant 26,231 alor Repairs Fund 5,246 lance alter alter of Duerhead 26,231 alor Repairs Fund 5,246 lance alter alter of Duerhead 26,231 alor Repairs Fund 5,246 lance alter alter of Duerhead 26,231 lance alter of Duerhead 26,231 lance alter of Duerhead 26,231 lance alter of Duerhead 26,231 lance alter alter of Duerhead 26,231 lance alter of Duerhead 26,231 lance alter alter of Duerhead 26,231 lance		_			
Average 744,388 Iance of Plant Mechanical 210,569 Iance of Plant Mechanical 260,536 Iance of Plant Electrical 260,536 ansformer 94,425 Line 720,000 printigency (20%) 760,332 les Taxes 0 gineering and CM (15%) 684,288 catal Development Costs 7,173,609 post Escalation factor from 2010 0 prevention factor from 2010 0 prevention factor from 2010 0 prevention factor from 2010 0 botte Escalation factor from 2010 0 botte Registron Cost 5,246,287 Line Right-of-Vag 130,909 sh& Wildlife Miligation 0 botte Screate 0 her (define) 0 <	Civil Works				
Jance of Plant Mechanical 210,569 Jance of Plant Electrical 260,536 Jance of Plant Electrical 260,536 ansformer 94,425 Line 720,000 ontingency (20%) 780,332 Jes Tates 0 gineering and CM (15%) 684,298 ostal Development Costs 7,173,609 stat Escalation factor from 2010 0 versing Cost 1,786,412 tatal Direct Construction Cost 5,246,287 Line Flight-or-Way 130,309 strice alk Archological 0 atter Quality Monitoring 0 ther (define) 0 her (define) 0 her (define) 0 her (define) 0 starming of Interconnection 10,000 starming in Interconnection 10,000 starme in Interconnection 10,000 starming in Interc	Turbine(s)				
Idance of Plant Mechanical 200,069 Idance of Plant Electrical 260,536 ansformer 94,425 Line 720,000 prinigency (20%) 760,332 les Taxes 0 gineering and CM (15%) 684,298 stat Development Costs 7,173,609 stat Scalation factor from 2010 0 versing Cost 1,786,412 Line Right-of-Way 130,309 stat Direct Construction Cost 5,246,287 Line Right-of-Way 130,309 state Quality Monitoring 0 state Quality Monitoring 0 state Quality Monitoring 0 her (define) 0 naul D&M Espense 266,236 eted Annual O&M 63,557 riable O&M 67,460 FigC Charges 5,047 ansmission / Interconnection 10,000 turace 15,733 wes 62,955 anagement / Office / Overhead 26,236 alor Repairs Fund 5,246 alor Repairs Fund 5,246 alor Repairs Fu	Generator(s)	/44,388			
Idance of Plant Electrical 260,36 formula's highlighted in light green can be update ansformer 94,425 initiagency (20%) 780,332 Initingency (20%) 770,300 initiagency (20%) initiagency (20%) ites Taxes 0 initiagency (20%) initiagency (20%) ites Status 0 initiagency (20%) initiagency (20%) ites Right-of-Way 130,903 initiagency (20%) initiagency (20%) ites Right-of-Way 0 initiagency (20%) initiagency (20%)	Balance of Plant Mechanical	210,569			
ansformer 34,425 Line 720,000 ontingency (20%) 760,332 les Taxes 0 gineering and CM (15%) 684,298 otal Development Costs 7,173,609 ost Escalation factor from 2010 0 uensing Cost 1,786,412 tat Direct Construction Cost 5,246,287 Line Flight-of-Way 130,909 sh & Wildlife Mitigation 0 ther Guality Monitoring 0 the Passane 0 her (define) 15,738 mes 62,985 anagement / Diffice / Overhead 26,231 ajor Repairs Fund 5,246 uent multiple (define) 0 her (define) 0 her (define) 10,000 her (define) 0 her (define) 10,000 her (define) 10,000 her (define) 10,000 her (define) 0 her (define) 10,000 her (define) 0 her (define) 10,000 her (define) 0 her (define) 10,000 her (define) 0 her (define)					
her (define) her (define) he		260,536		2. If user has more	e detailed cost information val
lies Taxes 0 igineering and CM (15%) 684,298 batal Development Costs 7,173,609 post Escalation factor from 2010 0 vensing Cost 1,796,412 tal Direct Construction Cost 5,246,287 Line Fight-of-Way 130,303 sh & Wildlife Mitigation 0 orcreation Mitigation 0 storical & Archiological 0 bet Passage 0 her (define) 10,000 her (define) <	Balance of Plant Electrical			2. If user has more	e detailed cost information val
les Taxes 0 igineering and CM (15%) 684,298 btal Development Costs 7,173,609 pst Escalation factor from 2010 0 usensing Cost 1,796,412 tal Direct Construction Cost 5,246,287 Line Pight-of-Way 130,309 sh & Wildlife Mitigation 0 vereation Mitigation 0 storical & Archiological 0 ater Quality Monitoring 0 her (define)	Balance of Plant Electrical Transformer	94,425		2. If user has more	e detailed cost information val
Datal Development Costs 7,173,609 Detensing Cost 1,796,412 tail Direct Construction Cost 5,246,287 tiane Right-of-Way 130,303 sh & Wildlife Mitigation 0 torreation Mitigation 0 storical & Archiological 0 storical & Archiological 0 ther Quality Monitoring 0 the Quality Monitoring 0 her (define) 0 her (define) 0 nual O&M 63,557 riable O&M 67,460 FRC Charges 5,047 ansmission / Interconnection 10,000 wes 62,955 anagement / Office / Overhead 26,231 ajor Repairs Fund 5,248 uotamation / Edetal Admin 10,000 her (define) 0	Balance of Plant Electrical Transformer T-Line Contingency (20%)	94,425 720,000		2. If user has more	e detailed cost information val
ast Escalation factor from 2010 0 vensing Cost 1,796,412 tal Direct Construction Cost 5,246,287 Line Fight-of-Way 130,309 sh & Wildlife Mitigation 0 oreration Mitigation 0 storical & Archiological 0 ater Quality Monitoring 0 her (define) 0 her (define) 0 her (define) 0 her (define) 0 strance 5,047 ansmission / Interconnection 10,000 strance 15,739 #es 62,955 anagement / Office / Overhead 26,231 ajor Repairs Fund 5,246 olamation / External 26,231 ajor Repairs Fund 5,246 olamation / External 26,231 angement / Office / Overhead 26,231 ajor Repairs Fund 5,246 olamation / External Admin 10,000	Balance of Plant Electrical Transformer T-Line Contingency (20%)	94,425 720,000 760,332		2. If user has more	e detailed cost information val
ast Escalation factor from 2010 0 vensing Cost 1,796,412 tal Direct Construction Cost 5,246,287 Line Fight-of-Way 130,303 sh & Wildlife Mitigation 0 ocreation Mitigation 0 storical & Archiological 0 ater Quality Monitoring 0 she (define) 0 her (define) 0 her (define) 0 storages 5,047 ansmission / Interconnection 10,000 surance 15,739 wes 62,955 anagement / Office / Overhead 26,231 ajor Repairs Fund 5,246 olamation / External 26,231 ajor Repairs Fund 5,246 olamation / External 26,231 and prime Fund 5,246	Balance of Plant Electrical Transformer T-Line Contingency (20%) Sales Taxes	94,425 720,000 760,332 0		2. If user has more	e detailed cost information val
Image: Sensing Cost 1,796,412 Ital Direct Construction Cost 5,246,287 Line Right-of-Way 130,909 sh & Wildlife Mitigation 0 woreation Mitigation 0 storical & Archiological 0 ster Quality Monitoring 0 her (define) 10,000 grant and B& (define) 10,000 grant and B 5,246 anagement / Office / Overhead 26,231 angor Repairs Fund <td>Balance of Plant Electrical Transformer T-Line Contingency (20%) Sales Taxes</td> <td>94,425 720,000 760,332 0</td> <td></td> <td>2. If user has more</td> <td>e detailed cost information val</td>	Balance of Plant Electrical Transformer T-Line Contingency (20%) Sales Taxes	94,425 720,000 760,332 0		2. If user has more	e detailed cost information val
tablet 5,246,287 Line Right-of-Way 130,303 sh & Vildlife Mitigation 0 tecreation Mitigation 0 storical & Archiological 0 ster Quality Monitoring 0 she (define) 0 her (define) 0 her (define) 0 nual O&M Expense 266,236 ted Annual O&M 63,557 riable O&M 67,460 FRC Charges 5,047 ansmission / Interconnection 10,000 was 62,955 anagement / Office / Overhead 26,231 solar Series Fund 5,246 colaration / Federal Admin 10,000 her (define) 0	Balance of Plant Electrical Transformer T-Line Contingency (20%) Sales Taxes Engineering and CM (15%)	94,425 720,000 760,332 0 684,298		2. If user has more	e detailed cost information val
Line Flight-of-Way 130,909 sh & Wildlife Mitigation 0 storical & Archiological 0 storical & Archiological 0 storical & Archiological 0 store y and the store of the store	Balance of Plant Electrical Transformer T-Line	94,425 720,000 760,332 0 684,298 7,173,609 0		2. If user has more	e detailed cost information val
sh & Vildlie Mitigation 0 ecreation Mitigation 0 storical & Archiological 0 ater Quality Monitoring 0 sh Passane 0 her (define) 0 her (define) 0 her (define) 0 her (define) 0 her (define) 0 her (define) 0 Expected additional cost (not ansmission / Interconnection 10,000 sturance 15,733 Wes 62,955 anagement / Office / Overhead 26,231 ajor Repairs Fund 5,246 colamation / Extend 4,211 aport Spairs Fund 5,246 colamation / Extend 4,211 ansmission / Interconnection 10,000 her (define) 0	Balance of Plant Electrical Transformer T-Line Contingency (20%) Sales Taxes Engineering and CM (15%) Total Development Costs Cost Escalation factor from 2010	94,425 720,000 760,332 0 684,298 7,173,609 0 1,796,412		2. If user has more	e detailed cost information val
Instrumentation 0 storical & Archiological 0 storical & Archiological 0 storical & Archiological 0 stare Quality Monitoring 0 sh Passane 0 her (define) 0	Balance of Plant Electrical Transformer T-Line Contingency (20%) Sales Taxes Engineering and CM (15%) Total Development Costs Cost Escalation factor from 2010 Licensing Cost Total Direct Construction Cost	94,425 720,000 760,332 0 684,298 7,173,609 0 1,796,412 5,246,287		2. If user has more	e detailed cost information val
Storial & Archiological 0 ater Quality Monitoring 0 the Quality Monitoring 0 the Passane 0 her (define) 0	Balance of Plant Electrical Transformer T-Line Contingency (20%) Sales Taxes Engineering and CM (15%) Total Development Costs Cost Escalation factor from 2010 Licensing Cost	94,425 720,000 760,332 0 684,298 7,173,609 0 1,796,412 5,246,287 130,309		2. If user has more	e detailed cost information val
storical & Archiological 0 ater Quality Monitoring 0 shPassage 0 her (define) 0	Balance of Plant Electrical Transformer T-Line Contingency (20%) Sales Taxes Engineering and CM (15%) Total Development Costs Cost Escalation factor from 2010 Licensing Cost Total Direct Construction Cost T-Line Right-of-Way	94,425 720,000 760,332 0 684,298 7,173,609 0 1,796,412 5,246,287 130,909 0		2. If user has more	e detailed cost information val
sh Passage 0 her (define) 0 her (define) 0 her (define) 0 nnual O&M Expense 266,236 red Annual O&M 63,557 riable O&M 67,460 ERC Charges 5,047 ansmission / Interconnection 10,000 surance 15,739 wes 62,955 anagement / Office / Overhead 26,231 ajor Repairs Fund 5,246 volamation / Eederal Admin 10.000 her (define) 0	Balance of Plant Electrical Transformer T-Line Contingency (20%) Sales Taxes Engineering and CM (15%) Total Development Costs Cost Escalation factor from 2010 Licensing Cost Total Direct Construction Cost	94,425 720,000 760,332 0 684,298 7,173,609 0 1,796,412 5,246,287 130,909 0 0		2. If user has mor formula's highlight	e detailed cost information val ed in light green oan be update
her (define) 0 her (define) her (define	Balance of Plant Electrical Transformer T-Line Contingency (20%) Sales Taxes Engineering and CM (15%) Total Development Costs Cost Escalation factor from 2010 Licensing Cost Total Direct Construction Cost T-Line Right-of-Way Fish & Wildlife Mitigation Recreation Mitigation	94,425 720,000 760,332 0 684,298 7,173,609 0 1,796,412 5,246,287 130,909 0 0 0		2. If user has mor formula's highlight	e detailed cost information val ed in light green oan be update
her (define) 0	Balance of Plant Electrical Transformer T-Line Contingency (20%) Sales Taxes Engineering and CM (15%) Total Development Costs Cost Escalation factor from 2010 Licensing Cost Total Direct Construction Cost T-Line Right-of-Way Fish & Wildlife Mitigation Recreation Mitigation Historical & Archiological Water Quality Monitoring	94,425 720,000 760,332 0 684,298 7,173,609 0 1,796,412 5,246,287 130,909 0 0 0 0 0		2. If user has mor formula's highlight	e detailed cost information val ed in light green can be update
Innual Oth Expense 266,236 ted Annual O&M 63,557 riable O&M 67,460 FRC Charges 5,047 ansmission / Interconnection 10,000 sturance 15,739 Wes 62,955 anagement / Office / Overhead 26,231 ajor Repairs Fund 5,246 colamation / Federal Admin 10,000 her (define) 0	Balance of Plant Electrical Transformer T-Line Contingency (20%) Sales Taxes Engineering and CM (15%) Total Development Costs Cost Escalation factor from 2010 Licensing Cost Total Direct Construction Cost T-Line Right-of-Way Fish & Wildlife Mitigation Recreation Mitigation Historical & Archiological Water Quality Monitoring Fish Passage	94,425 720,000 760,332 0 684,298 7,173,609 0 1,796,412 5,246,287 130,909 0 0 0 0 0 0		2. If user has mor formula's highlight	e detailed cost information val ed in light green oan be update
Red Annual O&M 63,557 riable O&M 67,460 FRC Charges 5,047 ansmission / Interconnection 10,000 strance 15,739 Wes 62,955 anagement / Office / Overhead 26,231 ajor Repairs Fund 5,246 olamation / Federal Admin 10,000	Balance of Plant Electrical Transformer T-Line Contingency (20%) Sales Taxes Engineering and CM (15%) Total Development Costs Cost Escalation factor from 2010 Licensing Cost Total Direct Construction Cost T-Line Right-of-Way Fish & Wildlife Mitigation Recreation Mitigation Historical & Archiological Water Quality Monitoring Fish Passane Other (define)	94,425 720,000 760,332 0 684,298 7,173,609 0 1,796,412 5,246,287 130,309 0 0 0 0 0 0 0 0 0 0		2. If user has mor formula's highlight	e detailed cost information val ed in light green can be update
Red Annual O&M 63,557 riable O&M 67,460 FRC Charges 5,047 ansmission / Interconnection 10,000 strance 15,739 Wes 62,955 anagement / Office / Overhead 26,231 ajor Repairs Fund 5,246 olamation / Federal Admin 10,000	Balance of Plant Electrical Transformer T-Line Contingency (20%) Sales Taxes Engineering and CM (15%) Total Development Costs Cost Escalation factor from 2010 Licensing Cost Total Direct Construction Cost T-Line Right-of-Way Fish & Wildlife Mitigation Recreation Mitigation Historical & Archiological Water Quality Monitoring Fish Passane Other (define)	94,425 720,000 760,332 0 684,298 7,173,609 0 1,796,412 5,246,287 130,309 0 0 0 0 0 0 0 0 0 0		2. If user has mor formula's highlight	e detailed cost information val ed in light green can be update
riable O&M 67,460 IRC Charges 5,047 ansmission / Interconnection 10,000 surance 15,739 Res 62,955 anagement / Office / Overhead 26,231 ajor Repairs Fund 5,246 volamation / Federal Admin 10,000 her (define) 0	Balance of Plant Electrical Transformer T-Line Contingency (20%) Sales Taxes Engineering and CM (15%) Total Development Costs Cost Escalation factor from 2010 Licensing Cost Total Direct Construction Cost T-Line Right-of-Way Fish & Wildlife Mitigation Recreation Mitigation Historical & Archiological Water Quality Monitoring Fish Passane Other (define) Other (define)	94,425 720,000 760,332 0 684,298 7,173,609 0 1,796,412 5,246,287 130,309 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2. If user has mor formula's highlight	e detailed cost information val ed in light green can be update
ERC Charges 5,047 ansmission / Interconnection 10,000 surance 15,739 wes 62,955 anagement / Office / Overhead 26,231 ajor Repairs Fund 5,246 welamation / Eederal Admin 10,000	Balance of Plant Electrical Transformer T-Line Contingency (20%) Sales Taxes Engineering and CM (15%) Total Development Costs Cost Escalation factor from 2010 Licensing Cost Total Direct Construction Cost T-Line Right-of-Way Fish & Wildlife Mitigation Recreation Mitigation Historical & Archiological Water Quality Monitoring Fish Passane Other (define) Other (define)	94,425 720,000 760,332 0 684,298 7,173,609 0 1,796,412 5,246,287 130,909 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2. If user has mor formula's highlight	e detailed cost information val ed in light green can be update
Assmission / Interconnection 10,000 Expected additional cost (not already included in the analysis) surance 15,739 already included in the analysis) wes 62,955 already included in the analysis) anagement / Office / Overhead 26,231 ajor Repairs Fund 5,246 welamation / Eederal Admin 10,000 her (define) 0	Balance of Plant Electrical Transformer T-Line Contingency (20%) Sales Taxes Engineering and CM (15%) Total Development Costs Cost Escalation factor from 2010 Licensing Cost Total Direct Construction Cost T-Line Right-of-Way Fish & Wildlife Mitigation Recreation Mitigation Historical & Archiological Water Quality Monitoring Fish Passane Other (define) Other (define) Annual O&M Expense Fixed Annual O&M	94,425 720,000 760,332 0 684,298 7,173,609 0 1,796,412 5,246,287 130,909 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		2. If user has mor formula's highlight	e detailed cost information val ed in light green oan be update
urance 15,739 already included in the analysis) wes 62,955 anagement / Office / Overhead 26,231 ajor Repairs Fund 5,246 welamation / Federal Admin 10,000 her (define) 0	Balance of Plant Electrical Transformer T-Line Contingency (20%) Sales Taxes Engineering and CM (15%) Total Development Costs Cost Escalation factor from 2010 Licensing Cost Total Direct Construction Cost T-Line Right-of-Way Fish & Wildlife Mitigation Recreation Mitigation Historical & Archiological Water Quality Monitoring Fish Passage Other (define) Other (define) Annual O&M Expense Fixed Annual O&M Variable O&M	94,425 720,000 760,332 0 684,298 7,173,609 0 1,796,412 5,246,287 130,909 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Licensing	2. If user has mor formula's highlight /Permittin	e detailed cost information val ed in light green can be update g COStS
xes 62,955 anagement / Office / Overhead 26,231 ajor Repairs Fund 5,246 sclamation / Federal Admin 10,000 her (define) 0	Balance of Plant Electrical Transformer T-Line Contingency (20%) Sales Taxes Engineering and CM (15%) Total Development Costs Cost Escalation factor from 2010 Licensing Cost Total Direct Construction Cost T-Line Right-of-Way Fish & Wildlife Mitigation Recreation Mitigation Historical & Archiological Water Quality Monitoring Fish Passane Other (define) Other (define) Other (define) Fixed Annual O&M Variable O&M FERC Charges	94,425 720,000 760,332 0 684,298 7,173,609 0 1,796,412 5,246,287 130,909 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Licensing	2. If user has mor formula's highlight /Permittin	e detailed cost information val ed in light green can be update g COStS
anagement / Office / Overhead 26,231 ajor Repairs Fund 5,246 colamation / Eederal Admin 10.000 her (define) 0	Balance of Plant Electrical Transformer T-Line Contingency (20%) Sales Taxes Engineering and CM (15%) Total Development Costs Cost Escalation factor from 2010 Licensing Cost Total Direct Construction Cost T-Line Right-of-Way Fish & Wildlife Mitigation Recreation Mitigation Historical & Archiological Water Quality Monitoring Fish Passane Other (define)	94,425 720,000 760,332 0 684,298 7,173,609 0 1,796,412 5,246,287 130,909 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Licensing	2. If user has more formula's highlight /Permitting additiona	e detailed cost information val ed in light green can be update g costs 1 cost (not
ajor Repairs Fund 5,246 eclamation / Federal Admin 10.000 her (define) 0	Balance of Plant Electrical Transformer T-Line Contingency (20%) Sales Taxes Engineering and CM (15%) Total Development Costs Cost Escalation factor from 2010 Licensing Cost Total Direct Construction Cost T-Line Right-of-Vay Fish & Vildlife Mitigation Recreation Mitigation Historical & Archiological Water Quality Monitoring Fish Passane Other (define) Other (define) Cost Expense Fixed Annual O&M Variable O&M FERC Charges Transmission / Interconnection Insurance	94,425 720,000 760,332 0 684,298 7,173,609 0 1,796,412 5,246,287 130,909 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Licensing	2. If user has more formula's highlight /Permitting additiona	e detailed cost information val ed in light green can be update g costs l cost (not
her (define) 0	Balance of Plant Electrical Transformer T-Line Contingency (20%) Sales Taxes Engineering and CM (15%) Total Development Costs Cost Escalation factor from 2010 Licensing Cost Total Direct Construction Cost T-Line Right-of-Way Fish & Wildlife Mitigation Recreation Mitigation Historical & Archiological Water Quality Monitoring Fish Passane Other (define) Other (define) Fixed Annual O&M Variable O&M FERC Charges Transmission / Interconnection Insurance Taxes	94,425 720,000 760,332 0 684,298 7,173,609 0 1,796,412 5,246,287 130,909 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Licensing	2. If user has more formula's highlight /Permitting additiona	e detailed cost information val ed in light green can be update g costs l cost (not
her (define) 0 🖌	Balance of Plant Electrical Transformer T-Line Contingency (20%) Sales Taxes Engineering and CM (15%) Total Development Costs Cost Escalation factor from 2010 Licensing Cost Total Direct Construction Cost T-Line Right-of-Way Fish & Wildlife Mitigation Recreation Mitigation Historical & Archiological Water Quality Monitoring Fish Passage Other (define) Cother (define) Fixed Annual O&M FERC Charges Transmission / Interconnection Insurance Taxes Management / Office / Overhead	94,425 720,000 760,332 0 684,298 7,173,609 0 1,796,412 5,246,287 130,309 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Licensing	2. If user has more formula's highlight /Permitting additiona	e detailed cost information val ed in light green can be update g costs 1 cost (not
	Balance of Plant Electrical Transformer T-Line Contingency (20%) Sales Taxes Engineering and CM (15%) Total Development Costs Cost Escalation factor from 2010 Licensing Cost Total Direct Construction Cost T-Line Right-of-Way Fish & Wildlife Mitigation Recreation Mitigation Historical & Archiological Water Quality Monitoring Fish Passane Other (define) Other (define) Cost Escalation & M Variable O&M FERC Charges Transmission / Interconnection Insurance Taxes	94,425 720,000 760,332 0 684,238 7,173,609 0 1,796,412 5,246,287 130,309 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Licensing	2. If user has more formula's highlight /Permitting additiona	e detailed cost information val ed in light green can be update g costs 1 cost (not
	Balance of Plant Electrical Transformer T-Line Contingency (20%) Bales Taxes Engineering and CM (15%) Total Development Costs Cost Escalation factor from 2010 Licensing Cost Total Direct Construction Cost T-Line Right-of-Way Tish & Wildlife Mitigation Recreation Mitigation Historical & Archiological Water Quality Monitoring Tish Passace Dther (define) Dther (define) Extend Annual O&M Variable O&M FERIC Charges Transmission / Interconnection Issurance Taxes Management / Office / Overhead Major Repairs Fund	94,425 720,000 760,332 0 684,298 7,173,609 0 1,796,412 5,246,287 130,309 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Licensing	2. If user has more formula's highlight /Permitting additiona	e detailed cost information val ed in light green can be update g costs l cost (not

Figure D-5 Screen Shot of Plant Cost Worksheet

- Benefit-Cost (BC) Ratio and Internal Rate of Return (IRR) Calculation: The calculations occur in the BC Ratio and IRR worksheet (See Figure D-6). The benefits analysis quantifies the green incentives and the power market price based on the project location (state). The power generation income and green energy income is calculated in column F and G in the BC Ratio and IRR worksheet (See Figure D-6). The construction cost is distributed equally within the first 3 years of project implementation i.e. from 2011-2014 for all sites. Income from power generation and green incentives and annual O&M expenses are calculated over the consecutive 47 year period after construction of project. The benefit cost ratio compares the present value of benefits during the period of analysis to the present value of costs (using a discount rate of 4.375%). The user can choose to enter a different interest rate if applicable. Figure D-6 highlights where the discount rate can be changed in the worksheet.
- The IRR is an alternate measure of the worth of an investment. Due to limitations in Excel, highly negative IRR results cannot be computed. Since a negative IRR indicates that a project is clearly uneconomic, the results (cells K 14 and K 17) show a "negative" rather than a negative numeric estimate.
 - Power Generation Income: Price forecasts from the AURORAxmp® Electric Market Model had to be adjusted to a state basis for use in model (see Chapter 3 for further discussion). The resulting price projections in \$/MWhr were compiled in the Price Projects worksheet (see Figure D-7). The Price Projections worksheet works as a lookup table for the model's power generation income calculations. Thus if the user has additional information regarding the power market and chooses to update or change any of the prices, the change should be made in the Price Projections worksheet. The user assumes responsibility for changes to the Price Projection worksheet and associated results.
 - Green Incentives: The green incentives values were also compiled in a manner and format similar to the energy prices. This information has been made available to the user in the Green Incentives worksheet (see Figure D-8). The Green Incentives tab also works as a lookup table for the green incentives calculations. Since the renewable energy generation (green energy) market is still evolving and the information provided in the green incentives need to be updated regularly for better accuracy of results, the

model allows the user to make changes to the values provided in the Green Incentives worksheet. The user assumes responsibility for changes to the Green Incentives worksheet and associated results.

Appendix D Using the Hydropower Assessment Tool

	A	В	С	D	E	F	G	Н	1	J	К	L
E	Benefit-Cost (B	C) Ratio a	nd Interna	Rate of R	eturn (IRR	1						
_	Notes for user:	of italio al	ia morna	indice of ite	orann (in the	1						
-	. BC ratio calculation uses	EV 2010 Enderal Dis	count Bate of 4 3	51/ to compute pre	cent usine of here	afite and costs (dis	count rate is calcula	tion input)				
	. IRR is the computed disc											
	 Costs and benefits are dis 			ide of benefics to a	ie present valde of	r costs (discodint la	te is calculation out	patj				
	 Nominal construction co 			scad at 2010 price	anal							
-	 3-year construction perio 		and a second	and a second	evel							
	 S. Annual O&M expenditure: 				r after constructio	n is complete						
	 Costs and benefits are ev 				arter constructio	ins complete						
	Benefits computed from				d Aurora model pr	ices (work sheet "P	rice Projections")					
). Due to limitations in excel							ic no numeric estima	ates are provided for	anu negative IBB re	cults and the result	is simpluident
	. Due to inflications in excer	, nging negative in in	results cannot be	compated.once a	negative in in rindio	ates that a project	s cleany direction	io,no numeno escina	stes are provided for	anynegativennin	saits and the result	is simply ident
h	nput Variables from "F	Plant Cost" Vor	ksheet						Vith Green Ince	ntive:		
	Construction Cost	The second se								efit-Cost Ratio:	2.25	
Ē	O&M Cost	\$266,236								IBB:	13.8%	
-	Our Cost	\$200,200									101070	
A	Assumptions								Vithout Green	ncentive:		
	Discount Rate	4.375%							Ben	efit-Cost Ratio:	2.11	1
r										IBB:	12.3%	
			_								12.570	-
H		Opportunition	American			Original	0		Mar da a f	Deserved Marth	Mat Dans fits	Math
		Construction	Annual			Generation	Green Energy		Worth of	Present Worth		Net Benet
		Cost	OM&R Cost		Present	Income	Price		Benefits (with	of Benefits	or Net Costs	or Net Co:
		(2010	(2010	the second second	Worth of	(2010	(2010	and the second second	Green	(w/o Green	(with Green	(w/o Gree
	Calendar Year	Dollars)	Dollars)	Total Costs	Costs	Dollars)	Dollars)	Total Benefits	Incentive)	Incentive)	Incentive)	Incentive
F	2010			\$0	\$0				\$0	\$0	\$0	
	2011	\$2,391,203		\$2,391,203	\$2,290,973				\$0	\$0	-\$2,391,203	-\$2,391
	2012	\$2,391,203		\$2,391,203	\$2,194,944				\$0	\$0	-\$2,391,203	-\$2,391
	2013	\$2,391,203		\$2,391,203	\$2,102,940				\$0	\$0	-\$2,391,203	-\$2,391
	2014		\$266,236	\$266,236	\$224,327	\$1,005,348	\$201,098	\$1,206,446	\$1,016,534	\$847.092	\$940,210	\$73
	2015		\$266,236	\$266,236	\$214,924	\$1,078,565	\$201,098	\$1,279,663	\$1,033,030	\$870,691	\$1,013,426	\$812
	2016		\$266,236	\$266,236	\$205,915	\$1,146,176	\$201,098			\$886,487	\$1,081,038	\$879
			+		1	• • • • • • • • •		******	+ 4- 1-1		•	
	2050		\$266,236	\$266,236	\$48,018	\$1,479,856	\$0		\$266,907	\$266,907	\$1,213,620	\$1,213
	2051		\$266,236	\$266,236	\$46,006	\$1,479,856	\$0	\$1,479,856	\$255,719	\$255,719	\$1,213,620	\$1,213
	2052		\$266,236	\$266,236	\$44,077	\$1,479,856	\$0	\$1,479,856	\$245,000	\$245,000	\$1,213,620	\$1,213
	2053		\$266,236	\$266,236	\$42,230	\$1,483,354	\$0	\$1,483,354	\$235,286	\$235,286	\$1,217,118	\$1,21
	2054		\$266,236	\$266,236	\$40,460	\$1,479,856	\$0		\$224,892	\$224,892	\$1,213,620	\$1,213
	2055		\$266,236	\$266,236	\$38,764	\$1,479,856	\$0	\$1,479,856	\$215,465	\$215,465	\$1,213,620	\$1,213
	2056		\$266,236	\$266,236	\$37,139	\$1,479,856	\$0	\$1,479,856	\$206,434	\$206,434	\$1,213,620	\$1,213
	2057		\$266,236	\$266,236	\$35,582	\$1,483,354	\$0	\$1,483,354	\$198,248	\$198,248	\$1,217,118	\$1,21
	2058		\$266,236	\$266,236	\$34,091	\$1,479,856	\$0	\$1,479,856	\$189,491	\$189,491	\$1,213,620	\$1,213
	2059		\$266,236	\$266,236	\$32,662	\$1,479,856	\$0	\$1,479,856	\$181,548	\$181,548	\$1,213,620	\$1,213
	2060		\$266,236	\$266,236	\$31,293	\$1,479,856	\$0	\$1,479,856	\$173,938	\$173,938	\$1,213,620	\$1,213
	Total -	\$7,173,609	\$12,513,096	\$19,686,705	\$11,225,391	\$66,632,205	\$2,212,931	\$68,845,136	\$25,203,046	\$23,683,994	\$49,158,430	\$46,945
-	Average		\$266,236			\$1,417,706	\$47,084					

Table D-6 Screen Shot of BC Ratio and IRR Worksheet

Appendix D Using the Hydropower Assessment Tool

	A	В	С	D	E	F	G	Н		J	К	L	M	N	0
MONTH	ILY ENERG	Y PRICE PRO	JECTIONS							-		_			_
Prices i	n \$/MVH														
	•••••														
Notes f	or user:														
1. Base d	ata source: A	Aurora model run,	provided by No	rthwest Power I	Planning Coun	cil for 6th Powe	r Plan								
2. Aurora	2006 nomina	al prices were inde	exed to 2010 pric	e level to match	n project costs	, using Aurora "	GenInfl" works	heet							
3. Prices	were disaggr	egated from Auro	ra regional basi	is to a state bas	is; prices for e	astern tier of R	eclamation sta	tes set equal to	average of all c	ther Reclamation	on states				
4. It is as:	sumed that p	ower generation b	egins in 2014, th	ie first year after	construction i	s complete, and	l prices are eva	luated over a 47	year period, 20	14-2060					
5. Aurora	price project	ions were used fo	or years 2014-20	30; after that the	2030 Aurora j	projection is us	ed for the perio	d 2031-2060							
Sum of 20			State Name												
Report_N	4onth	Report_Year	Arizona		Colorado	Idaho	Kansas	Montana				North Dakota		Oregon	South Dake
	1	2014	\$55.39		\$54.85				\$56.21		\$53.59	\$56.21	\$56.21	\$58.58	
		2015	\$60.17	\$65.97	\$59.55				\$60.91	+	\$58.34	\$60.91	\$60.91	\$63.65	
		2016	\$63.42	\$69.52	\$63.75				\$64.76		\$62.88	\$64.76	\$64.76	\$67.57	
		2017	\$66.55	\$72.27	\$67.97						\$67.22	\$68.19	\$68.19	\$70.74	
		2018	\$68.40	\$73.97	\$70.31						\$69.86	\$70.25	\$70.25	\$72.67	
		2019	\$70.17	\$75.96	\$71.92	•					\$71.61	\$72.20	\$72.20	\$74.89	
		2020	\$71.79	\$77.53	\$74.34						\$73.42	\$74.01	\$74.01	\$76.29	
		2021	\$73.37	\$79.47	\$75.24		\$75.77			\$76.43	\$75.55	\$75.77	\$75.77	\$77.99	
-		2022	\$75.02	\$81.35	\$76.00						\$76.96	\$77.21	\$77.21	\$79.04	
		2023	\$76.92	\$84.03	\$77.25					\$80.31	\$78.77	\$79.34	\$79.34	\$81.54	
		2024	\$77.93	\$85.39	\$78.91		\$80.61		\$80.61		\$79.76	\$80.61	\$80.61	\$82.67	
-		2025	\$79.80	\$87.46	\$79.72				\$82.23		\$81.19	\$82.23	\$82.23	\$84.28	
-		2026	\$80.46	\$88.67	\$80.02				\$83.25		\$82.35	\$83.25	\$83.25	\$85.52	
-		2027	\$81.16	\$89.63	\$79.92				\$83.88		\$82.74	\$83.88	\$83.88	\$86.20	
-		2028	\$81.94	\$90.86	\$79.86		\$84.93				\$83.69	\$84.93	\$84.93	\$87.69	
-		2029	\$82.48	\$91.57	\$80.42					\$87.96	\$84.35	\$85.77	\$85.77	\$88.58	
-		2030	\$83.23	\$92.66	\$81.20		\$86.66				\$85.32	\$86.66	\$86.66	\$89.71	
		2031	\$83.23	\$92.66	\$81.20		\$86.66			\$89.16	\$85.32	\$86.66	\$86.66	\$89.71	
-		2032	\$83.23	\$92.66	\$81.20		\$86.66			•	\$85.32	\$86.66	\$86.66	\$89.71	
-		2033	\$83.23	\$92.66	\$81.20	• • • • •	\$86.66			• • • • • •	\$85.32	\$86.66	\$86.66	\$89.71	
		2034 2035	\$83.23	\$92.66	\$81.20		\$86.66				\$85.32	\$86.66	\$86.66	\$89.71	
			\$83.23	\$92.66	\$81.20		\$86.66				\$85.32	\$86.66 #90.00	\$86.66	\$89.71	
		2036	\$83.23	\$92.66	\$81.20		\$86.66			\$89.16	\$85.32	\$86.66	\$86.66	\$89.71	
		2037	\$83.23	\$92.66	\$81.20		\$86.66				\$85.32	\$86.66	\$86.66	\$89.71	
		2038	\$83.23 \$83.23	\$92.66	\$81.20		\$86.66				\$85.32 \$85.32	\$86.66	\$86.66	\$89.71	
				\$92.66	\$81.20		\$86.66			•	• • • • • • • • • • • • • • • • • • • •	\$86.66	\$86.66	\$89.71	
-		2040		\$92.66	\$81.20			•			\$85.32	\$86.66	\$86.66	\$89.71	
4		2041	\$83.23	\$92.66	\$81.20	\$84.94	\$86.66	\$82.52	\$86.66	\$89.16	\$85.32	\$86.66	\$86.66	\$89.71	

Figure D-7 Screen Shot of the Price Projections Worksheet

	A	В	С	D	E	F	G	Н	I	J	K	L	M	N	0	P =
1	Summary	of Greer	n Incentiv	ves												<u></u>
	Maximum				e/Region											
3	Maximum	moentre	e (\$1100	1,101 0141	entegion											
4																
5	Plant Capaci	tu	3.29	MV												
6		-,														
7	Report Year	Arizona	California	Colorado	Idaho	Kansas	Montana	Nebraska	Nevada	New Mexico	North Dakota	Oklahoma	Oregon	South Dakota	Texas	Utah
8	2014	\$0.0650	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.01
9	2015	\$0.0650	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.01
10	2016	\$0.0650	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.01
11	2017	\$0.0650	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.01
12	2018	\$0.0650	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.01
13	2019	\$0.0650	\$0.0110		\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.01
14	2020	\$0.0650	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.01
15	2021	\$0.0650	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	· · ·	\$0.0110	\$0.01
16	2022	\$0.0650	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.01
17	2023	\$0.0650	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.01
18	2024	\$0.0650	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110	\$0.0110		\$0.0110	\$0.01
19	2025	\$0.0540	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000		\$0.0000	\$0.000
20	2026	\$0.0540	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000		\$0.0000	\$0.000
21	2027	\$0.0540	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000		\$0.0000	\$0.000
22	2028	\$0.0540	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000		\$0.0000	\$0.000
23	2029	\$0.0540	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000		\$0.0000	\$0.000
24	2030	\$0.0540	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000		\$0.0000	\$0.000
25	2031 2032	\$0.0540 \$0.0540	\$0.0000 \$0.0000	\$0.0000 \$0.0000	\$0.000											
26 27	2032	\$0.0540	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000 \$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000 \$0.0000	\$0.0000		\$0.0000	\$0.000
28	2033	\$0.0540	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.000
20	2034	\$0.0040	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	+	\$0.0000	\$0.000
30	2035	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000		\$0.0000	\$0.000
31	2030	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000		\$0.0000	\$0.000
32	2038	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.000
33	2039	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000		\$0.0000	\$0.000
34	2040	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000		\$0.0000	\$0.000
35	2041	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	· · · · · · · · · · · · · · · · · · ·	\$0.0000	\$0.000
36	2042	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000		\$0.0000	\$0.000
37	2043	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.000
38	2044	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.000
39	2045	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.000
40	2046	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.000
41	2047	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.0000	\$0.000
42	2048	\$0.000	\$0.0000		\$0.0000	*0.0000	0000 0¢	\$0.000	¢0.000	\$0.0000	\$0.0000	\$0.000	¢0 0000	1 *0 0000	¢0 0000	\$0.00r
14	4 • • • 📈 🖉	lant Cost	🖉 BC Rati	o and IRR 🚽	Results	Price Pro	jections 📜	Green Inc	entives 🦯	Templates	<u> </u>					

Figure D-8 Screen Shot of Green Incentives Worksheet

D.4 Analysis Results

The Results worksheet (see Figure D-9) summarizes key results from the analysis about the site characteristics and relative economics of implementing the project. The user should review the flow exceedance and net head exceedance worksheets for a better understanding of the hydrological aspects of the site.

The value of the Hydropower Assessment Tool is that it allows a very quick assessment of a site's potential. The model is reliable in making preliminary analysis as it calculates the key factors that can influence the project's economical potential. It also displays some key design factors, such as installation capacity and plant factor to assist in decision making.

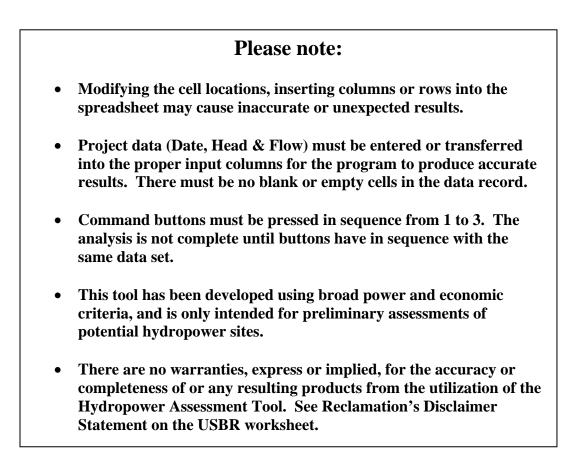

Bureau of Reclan	· · ·						
Facility Name	A.R. Bowman	Dam					
4 Agency	Bureau of Reclamati						
5 Analysis Performed by							
6 Project Location (State)	Oregon						
7	¥						
8 Results				Benefit/Cost Analysis			
9 Input Data Analysis				Projected expenditure to i	mpleme	ent project	
10 Data Set	29	years		¹ Total Construction Cost	\$	7,173,609	
11 Max Head	190.1			¹ Annual O&M Cost	\$	266,236	
12 Min Head	109.7			² Projected Total Cost ove	r l		
13 Max Flow	3,280	cfs		50 year period	s	11,225,391	
4 Min Flow	7	cfs			•		
15				Projected revenue after in	pleme	ntation of project	
16 Turbine Selection Analysis				¹ Power generation incom	•		
17 Selected Turbine Type	Francis			for 2014 to 2060	۲, s	66.632.205	
18 Selected Design Head	173			¹ Green Energy Sellback	1		
19 Selected Design flow	264			income for 2014 to 2060	s	2,212,931	
20 Generator Speed		rpm			-	2,212,001	
21 Max Head Limit	215.7			² Projected Total Revenue			
22 Min Head Limit	112.2			over 50 year period (with		25 202 040	
23 Max Flow Limit	264			Green Incentives) ² Projected Total Revenue	\$	25,203,046	
24 Min Flow Limit	53	cfs		over 50 year period (w/o			
25				Green Incentives)	s	23,683,994	
26 Power Generation Analys	sis			Benefit/Cost Ratio (with	1		
27 Installed Capacity	515	3,293	AM	Green incentives)		2.25	
28 Plant Factor		0.65		Benefit/Cost Ratio (w/o		LILO	
		0.05		Green incentives)		2.11	
29 Projected Monthly Produ	uction:			Internal Rate of Return (wi	th		
30 January		875	MWH	Green incentives)	_	13.8%	
31 February*		1,092	MWH	Internal Rate of Return (w) Green incentives)	°	12.3%	
32 March		1,393	MWH	Sicerincentives		12.0%	
33 April		1,989			-		
34 May		2,250		Installed Cost \$ per kW	\$	2,178	
35 June		2.233					
36 July		2,150		Note: ¹ expressed in nominal 2010	dollars		
37 August		2,047		² expressed in nominal 2010			
38 September		1.718					
39 October				4			
		1,126					
40 November		611 I					
41 December		796 I		4			
42 Annual production	* 1	8,282	MWH				
43 * For non-leap year							

Figure D-9 Screen Shot of Results Worksheet

D.5 Contact Information

Reclamation has provided contact information for further information on the Hydropower Assessment Tool, as shown in the Start worksheet and below.

36				
37	For help contact:			
38	Michael Pulskamp,			
39	Program Analyst- Power Resources	Office		
40	Bureau of Reclamation			
41	303-445-2931			
42	mpulskamp@usbr.gov			
43				
44		Use D	emonstration Data	
45	Clear Charts - Start Over	A.R	. Bowman Dam	
46				
47				
48				
<u>1</u> 9 ≰	USBR Start Input Data	Flow Ex	ceedance 🖉 Net He	ad Exce

This page intentionally left blank.

Appendix E Site Evaluation Results

This appendix presents the detailed results reported by the Hydropower Assessment Tool for all sites run through the model.

E.1 Site Ranking

Tables E-1 and E-2 rank all sites run through the Hydropower Assessment Tool from highest benefit cost ratio to lowest benefit cost ratio, incorporating green incentives and without green incentives. The table does not include canal and tunnel sites identified for further analysis. Chapter 5 of the report discusses results by Reclamation region and ranks sites by region according to the benefit cost ratio with green incentives.

E.2 Detailed Results Tables

Tables E-3 through E-7 include detailed site evaluation results for power generation and the economic analysis. The results format is taken directly from the Results worksheet in the Hydropower Assessment Tool. The tables show results for all sites run through the model, even those that were determined not to have hydropower potential. For some sites that did not have hydropower potential, the model could not complete calculations and the column is mostly blank. For other sites without hydropower potential, the model could complete calculations, but the design head and design flow are zero or close to zero, indicating no potential for hydropower development.

Site ID	Site Name/Facility	Data Confidence Level	Installed Capacity (kW)	Annual Production (MWh)	Total Development Cost (\$)	\$/Installed Capacity	BC Ratio with Green	IRR with Green
LC-6	Bartlett Dam	Medium	7529	36880	\$15,120.0	\$2,008	3.5	23.0%
GP-146	Yellowtail Afterbay Dam	Medium	9203	68261	\$19,852.4	\$2,157	3.05	18.2%
UC-141	Sixth Water Flow Control	Medium	25800	114420	\$38,227.9	\$1,482	3.02	17.1%
LC-20	Horseshoe Dam	Low	13857	59854	\$30,123.0	\$2,174	2.98	19.0%
GP-125	Twin Buttes Dam	Low	23124	97457	\$33,654.2	\$1,455	2.61	16.0%
UC-185	Upper Diamond Fork Flow Control Structure	Medium	12214	52161	\$22,058.5	\$1,806	2.36	13.6%
GP-99	Pueblo Dam	High	13027	55620	\$22,193.9	\$1,704	2.34	14.0%
MP-30	Prosser Creek Dam	High	872	3819	\$3,119.0	\$3,576	1.98	14.2%
PN-6	Arthur R. Bowman Dam	High	3293	18282	\$8,994.9	\$2,732	1.9	11.2%
UC-89	M&D Canal-Shavano Falls	Low	2862	15419	\$7,260.4	\$2,536	1.88	11.4%
GP-56	Huntley Diversion Dam	Medium	2426	17430	\$8,361.0	\$3,446	1.86	10.9%
MP-2	Boca Dam	High	1184	4370	\$4,393.0	\$3,711	1.68	11.3%
PN-31	Easton Diversion Dam	High	1057	7400	\$4,006.9	\$3,792	1.68	9.9%
UC-159 LC-21	Spanish Fork Flow Control Structure Imperial Dam	Medium	8114 1079	22920 5325	\$13,147.5 \$4,617.5	\$1,620 \$4,280	1.66 1.61	9.6% 10.0%
GP-46	Gray Reef Dam	Low High	2067	13059	\$8,159.3	<u> </u>	1.58	8.7%
MP-8	Casitas Dam	High	1042	3280	\$3,298.9		1.56	8.7% 10.7%
UC-49	Grand Valley Diversion Dam	Medium	1042	14246	\$9,070.0	\$4,584	1.57	8.6%
UC-52	Gunnison Tunnel	Medium	3830	14246	\$9,070.0	\$2,972	1.55	8.8%
GP-23	Clark Canyon Dam	High	3078	13689	\$7,923.7	\$2,575	1.55	8.6%
UC-19	Caballo Dam	Low	3260	15095	\$10,197.9	\$3,128	1.52	7.9%
	South Canal, Sta. 181+10, "Site	-						
UC-147	#4"	Medium	3046	15536	\$9,975.1	\$3,275	1.44	8.0%
PN-95	Sunnyside Dam	Medium	1362	10182	\$6,912.0	\$5,075	1.43	7.8%
UC-144	Soldier Creek Dam	High	444	2909	\$1,790.2	\$4,033	1.39	7.9%
GP-52	Helena Valley Pumping Plant	High	2626	9608	\$5,568.1	\$2,120	1.38	7.8%
UC-131	Ridgway Dam	High	3366	14040	\$9,885.1	\$2,937	1.35	7.3%
GP-41	Gibson Dam South Canal, Sta 19+ 10 "Site	High	8521	30774	\$19,928.0	\$2,339	1.32	7.1%
UC-146	#1"	Medium	2465	12576	\$8,883.4	\$3,603	1.32	7.1%
UC-51	Gunnison Diversion Dam	Medium	1435	9220	\$6,934.9	\$4,832	1.28	6.7%
PN-88	Scootney Wasteway	Low	2276	11238	\$8,014.4	\$3,521	1.26	6.6%
UC-150	South Canal, Sta.106+65, "Site	Medium	2224	11343	\$8,399.7	\$3,777	1.26	6.6%

Site ID	Site Name/Facility	Data Confidence Level	Installed Capacity (kW)	Annual Production (MWh)	Total Development Cost (\$)	\$/Installed Capacity	BC Ratio with Green	IRR with Green
	#3"							
GP-126	Twin Lakes Dam (USBR)	High	981	5648	\$4,192.7	\$4,274	1.24	6.5%
GP-95	Pathfinder Dam	High	743	5508	\$4,476.4	\$6,022	1.23	6.2%
UC-162	Starvation Dam	High	3043	13168	\$10,530.6	\$3,461	1.23	6.2%
LC-15	Gila Gravity Main Canal							
	Headworks	Medium	223	1548	\$1,702.6	\$7,632	1.17	6.0%
GP-43	Granby Dam	High	484	2854	\$2,144.1	\$4,426	1.16	5.9%
MP-32	Putah Diversion Dam	Medium	363	1924	\$2,815.3	\$7,745	1.16	6.3%
UC-179	Taylor Park Dam	High	2543	12488	\$10,991.2	\$4,323	1.12	5.4%
GP-136	Willwood Diversion Dam	High	1062	6337	\$5,741.7	\$5,407	1.1	5.2%
GP-93	Pactola Dam	High	596	2725	\$2,207.5	\$3,706	1.07	5.1%
UC-57	Heron Dam	Medium	2701	8874	\$8,020.4	\$2,970	1.06	4.9%
UC-148	South Canal, Sta. 472+00, "Site #5"	Medium	1354	6905	\$6,155.4	\$4,548	1.05	4.8%
UC-154	Southside Canal, Sta 171+ 90 thru 200+ 67 (2 canal drops)	Low	2026	6557	\$5,595.9	\$2,762	1.05	4.8%
PN-34	Emigrant Dam	High	733	2619	\$2,209.7	\$3,013	0.99	4.3%
UC-177	Syar Tunnel	Medium	1762	7982	\$8,246.1	\$4,680	0.99	4.3%
PN-104	Wickiup Dam	High	3950	15650	\$15,178.6	\$3,843	0.98	4.2%
UC-174	Sumner Dam	Medium	822	4300	\$4,193.5	\$5,103	0.98	4.2%
GP-34	East Portal Diversion Dam	High	283	1799	\$1,553.3	\$5,495	0.96	3.9%
PN-12	Cle Elum Dam	High	7249	14911	\$13,692.3	\$1,889	0.94	3.8%
PN-80	Ririe Dam	High	993	3778	\$3,636.9	\$3,661	0.94	3.8%
	Southside Canal, Sta 349+ 05	Ŭ						
UC-155	thru 375+ 42 (3 canal drops)	Low	1651	5344	\$5,169.8	\$3,131	0.93	3.7%
PN-87	Scoggins Dam	High	955	3683	\$3,665.4	\$3,838	0.92	3.6%
UC-132	Rifle Gap Dam	High	341	1740	\$1,574.9	\$4,621	0.92	3.5%
GP-5	Angostura Dam	Low	947	3218	\$3,179.2	\$3,358	0.9	3.3%
MP-17	John Franchi Dam	Low	469	1863	\$3,624.5	\$7,728	0.9	3.0%
GP-39	Fresno Dam	High	1661	6268	\$6,013.9	\$3,620	0.88	3.2%
GP-129	Virginia Smith Dam	Low	1607	9799	\$11,467.6	\$7,137	0.88	3.3%
PN-59	McKay Dam	High	1362	4344	\$4,274.0	\$3,138	0.88	3.2%
GP-128	Vandalia Diversion Dam	Medium	326	1907	\$1,779.4	\$5,461	0.87	3.0%
PN-49	Keechelus Dam	High	2394	6746	\$6,774.2	\$2,830	0.87	3.0%
PN-44	Haystack	High	805	3738	\$3,916.4	\$4,866	0.85	2.9%
UC-72	Joes Valley Dam	High	1624	6596	\$7,764.3	\$4,780	0.85	3.0%
UC-145	South Canal Tunnels	Medium	884	4497	\$5,005.8	\$5,665	0.84	2.8%

Site ID	Site Name/Facility	Data Confidence Level	Installed Capacity (kW)	Annual Production (MWh)	Total Development Cost (\$)	\$/Installed Capacity	BC Ratio with Green	IRR with Green
MP-24	Marble Bluff Dam	High	1153	5624	\$6,854.2	\$5,943	0.83	2.8%
GP-92	Olympus Dam	High	284	1549	\$1,552.4	\$5,472	0.82	2.3%
GP-117	St. Mary Canal - Drop 4	High	2569	8919	\$9,599.7	\$3,736	0.82	2.6%
GP-42	Glen Elder Dam	High	1008	3713	\$4,260.6	\$4,229	0.81	2.4%
UC-117	Paonia Dam	Medium	1582	5821	\$7,092.5	\$4,482	0.79	2.3%
PN-48	Kachess Dam	Medium	1227	3877	\$4,335.9	\$3,535	0.77	1.9%
GP-118	St. Mary Canal - Drop 5	High	1901	7586	\$9,154.5	\$4,817	0.75	1.8%
PN-57	Mason Dam	High	1649	5773	\$7,276.4	\$4,414	0.72	1.5%
UC-166	Steinaker Dam	High	603	1965	\$2,388.4	\$3,959	0.71	1.0%
GP-135	Willwood Canal	Medium	687	3134	\$4,452.3	\$6,481	0.7	1.4%
GP-22	Choke Canyon Dam	Low	194	1199	\$1,506.0	\$7,755	0.69	0.7%
GP-76	Merritt Dam	Low	1631	8438	\$12,641.1	\$7,752	0.68	1.2%
PN-101	Warm Springs Dam	High	1234	3256	\$4,326.6	\$3,507	0.66	0.4%
GP-120	Sun River Diversion Dam	High	2015	8645	\$12,611.4	\$6,259	0.65	0.8%
MP-18	Lake Tahoe Dam	High	287	893	\$2,494.8	\$8,686	0.65	Negative
GP-50	Heart Butte Dam	High	294	1178	\$1,562.5	\$5,315	0.64	Negative
GP-141	Wyoming Canal - Station 1490	Low	538	2305	\$3,249.5	\$6,042	0.64	0.3%
PN-97	Thief Valley Dam	Medium	369	1833	\$2,601.0	\$7,050	0.64	0.1%
UC-22	Crawford Dam	High	303	1217	\$1,592.4	\$5,264	0.64	Negative
LC-24	Laguna Dam	Low	125	566	\$1,100.0	\$8,794	0.63	Negative
GP-24	Corbett Diversion Dam	High	638	2846	\$4,782.3	\$7,500	0.59	0.1%
UC-126	Red Fleet Dam	High	455	1904	\$3,031.9	\$6,666	0.59	Negative
UC-140	Silver Jack Dam	High	748	2913	\$4,863.9	\$6,504	0.57	Negative
GP-18	Carter Lake Dam No. 1	High	842	2266	\$3,642.7	\$4,328	0.56	Negative
GP-114	St. Mary Canal - Drop 1	High	1212	4838	\$7,901.8	\$6,518	0.56	Negative
CD 120	Woods Project, Greenfield Main	Low	746	2680	¢4 404 6	¢с с 40	0.56	Negotivo
GP-138 PN-41	Canal Drop Golden Gate Canal	Low Low	746 514	2680 2293	\$4,131.6 \$3,991.6	<u>\$5,540</u> \$7,771	0.56 0.56	Negative Negative
PN-41 PN-56	Mann Creek	High	495	2293	\$3,554.4	\$7,174	0.56	Negative
UC-116	Outlet Canal	Medium	495 586	1839	\$3,264.8	\$5,570	0.56	
GP-137	Wind River Diversion Dam	High	398	1595	\$3,264.8 \$2,921.2	\$5,570 \$7,344	0.52	Negative Negative
		Medium						
UC-190	Vega Dam		548	1702	\$3,012.5	\$5,499	0.51	Negative
GP-115	St. Mary Canal - Drop 2	High	974	3887	\$7,141.0	\$7,333	0.5	Negative
GP-10	Belle Fourche Dam	High	497	1319	\$2,376.3	\$4,786	0.49	Negative
GP-145	Wyoming Canal - Station 997	Low	287	1228	\$2,224.9	\$7,751	0.49	Negative
GP-116	St. Mary Canal - Drop 3	High	887	3538	\$6,832.5	\$7,707	0.47	Negative
GP-108	Shadow Mountain Dam	High	119	777	\$1,471.5	\$12,316	0.46	Negative

Site ID Site Name/Facility Data Installed Annual Total \$/Installed **BC** Ratio IRR with Confidence Production Development Capacity with Green Capacity Level Cost (\$) Green (kW) (MWh) UC-136 Scofield Dam High 266 906 \$1,780.5 \$6,700 0.45 Negative UC-36 929 East Canyon Dam High 3549 \$8,271.6 \$8,907 0.44 Negative GP-28 Deerfield Dam High 138 694 \$1,392.4 \$10,109 0.43 Negative GP-75 Medicine Creek Dam \$7,631 High 276 1001 \$2,103.6 0.43 Negative UC-6 230 Avalon Dam 1031 \$2,260.8 \$9.818 0.42 Negative High GP-15 Bull Lake Dam 933 2302 \$5,327.8 \$5,709 0.41 Negative High Wyoming Canal - Station 1016 GP-140 Low 220 939 \$2,036.0 \$9,275 0.41 Negative GP-31 **Dodson Diversion Dam** \$7,895 Negative Low 140 566 \$1,106.9 0.4 UC-62 Hvrum Dam High 491 2052 \$5,081.3 \$10,346 0.4 Negative UC-93 Meeks Cabin Dam High 1586 4709 \$11,641.2 \$7,341 0.4 Negative UC-124 Platoro Dam High 845 3747 \$10.106.2 \$11.964 0.38 Negative Greenfield Project, Greenfield GP-47 Main Canal Drop Low 238 830 \$1,848.6 \$7,779 0.37 Negative GP-107 Shadehill Dam 322 \$12.806 High 1536 \$4.128.1 0.37 Negative GP-8 Barretts Diversion Dam Medium 102 546 \$1,391.4 \$13,596 0.35 Negative GP-54 350 \$2,202.8 Horsetooth Dam High 847 \$6,288 0.34 Negative GP-142 Wyoming Canal - Station 1520 Low 175 749 \$2,002.2 \$11,454 0.34 Negative UC-67 Inlet Canal Medium 252 966 \$2,596.6 \$10,320 0.34 Negative GP-103 Saint Mary Diversion Dam \$1.833.7 \$10.340 High 177 720 0.33 Negative PN-2 Agency Valley 1179 3941 \$11,353.3 \$9,626 0.33 Negative High MP-33 Rainbow Dam Medium 190 998 \$5,915.9 \$31,116 0.32 Negative Brantley Dam Medium 210 \$9,481 UC-16 697 \$1,991.3 0.32 Negative Upper Stillwater Dam UC-187 Medium 581 1904 \$6,064.5 \$10,431 0.32 Negative PN-43 Harper Dam Low 434 1874 \$5,901.2 Negative \$13,606 0.31 MP-3 Bradburv Dam 142 521 \$3.093.8 \$21.749 0.3 Negative Medium PN-58 Maxwell Dam Medium 117 \$2,075.4 \$17,766 0.3 Negative 644 GP-132 Willow Creek Dam High 272 863 \$1,239.9 \$14,980 0.29 Negative PN-52 Little Wood River Dam High 1493 4951 \$17,931.2 \$12.013 0.29 Negative Wyoming Canal - Station 1972 \$4,237.5 GP-144 285 1218 \$14,860 0.28 Negative Low PN-105 Wild Horse - BIA High 267 791 \$2.873.0 \$10.764 0.27 Negative GP-37 Fort Shaw Diversion Dam Medium 183 1111 \$4,029.4 \$22,014 0.26 Negative GP-59 Jamestown Dam High 113 338 \$1,166.5 \$10,338 0.25 Negative MP-31 Putah Creek Dam 28 \$1,047.7 Medium 166 \$38,062 0.25 Negative PN-20 306 Crane Prairie Hiah 1845 \$7.751.3 \$25.317 0.25 Negative GP-58 James Diversion Dam 825 \$3,357.8 \$17,377 High 193 0.24 Negative GP-68 Lake Sherburne Dam Medium 898 1502 \$5.934.4 \$6.605 0.24 Negative GP-122 Trenton Dam High 208 570 \$2,180.7 \$10,461 0.24 Negative

Site ID	Site Name/Facility	Data Confidence Level	Installed Capacity (kW)	Annual Production (MWh)	Total Development Cost (\$)	\$/Installed Capacity	BC Ratio with Green	IRR with Green
PN-1	Agate Dam	High	89	264	\$821.5	\$9,267	0.24	Negative
UC-102	Nambe Falls Dam	Low	147	593	\$2,373.7	\$16,097	0.24	Negative
GP-98	Pishkun Dike - No. 4	High	610	1399	\$5,574.0	\$9,141	0.23	Negative
GP-35	Enders Dam	High	267	762	\$3,492.3	\$13,082	0.22	Negative
UC-23	Currant Creek Dam	High	146	1003	\$4,611.2	\$31,659	0.22	Negative
UC-100	Moon Lake Dam	High	634	1563	\$7,328.5	\$11,564	0.22	Negative
GP-60	Johnson Project, Greenfield Main Canal Drop	Medium	203	525	\$2,038.9	\$10,052	0.21	Negative
MP-1	Anderson-Rose Dam	Medium	29	126	\$377.7	\$12,916	0.21	Negative
MP-44	Upper Slaven Dam	Medium	158	720	\$3,474.0	\$21,974	0.21	Negative
UC-28	Dolores Tunnel	Medium	103	515	\$2,277.1	\$22,077	0.21	Negative
UC-169	Stillwater Tunnel	Medium	413	1334	\$6,342.4	\$15,340	0.21	Negative
PN-10	Bumping Lake	High	521	2200	\$11,275.7	\$21,650	0.2	Negative
PN-24	Deadwood Dam	High	871	3563	\$19,510.1	\$22,402	0.2	Negative
UC-84	Lost Creek Dam	High	410	1295	\$6,599.2	\$16,082	0.2	Negative
PN-53	Lytle Creek	Low	50	329	\$1,603.2	\$32,368	0.19	Negative
UC-98	Montrose and Delta Canal	Low	96	478	\$2,343.8	\$24,452	0.19	Negative
PN-37	Fish Lake	High	102	235	\$1,176.0	\$11,555	0.18	Negative
UC-44	Fort Sumner Diversion Dam	High	75	378	\$2,213.6	\$29,472	0.17	Negative
PN-65	Ochoco Dam	High	69	232	\$1,286.3	\$18,532	0.16	Negative
UC-15	Blanco Tunnel	Medium	276	849	\$5,526.7	\$20,041	0.16	Negative
GP-12	Bonny Dam	High	36	238	\$1,476.8	\$40,837	0.15	Negative
GP-38	Foss Dam	Low	49	242	\$1,646.7	\$33,582	0.14	Negative
MP-15	Gerber Dam	Medium	248	760	\$5,358.0	\$21,621	0.14	Negative
PN-100	Unity Dam	Medium	307	1329	\$9,462.0	\$30,808	0.14	Negative
UC-196	Weber-Provo Canal	Low	424	1844	\$14,266.2	\$33,648	0.14	Negative
GP-63	Kirwin Dam	High	179	466	\$3,578.9	\$20,036	0.13	Negative
GP-143	Wyoming Canal - Station 1626	Low	52	195	\$1,337.4	\$25,531	0.13	Negative
PN-9	Bully Creek	High	313	1065	\$8,062.9	\$25,773	0.13	Negative
GP-14	Bretch Diversion Canal	Low	24	111	\$712.3	\$29,778	0.12	Negative
GP-102	Red Willow Dam	High	21	148	\$780.7	\$37,427	0.12	Negative
PN-78	Reservoir "A"	High	45	169	\$1,262.2	\$27,968	0.12	Negative
UC-4	Angostura Diversion	High	33	91	\$564.2	\$17,183	0.12	Negative
UC-5	Arthur V. Watkins Dam	High	31	122	\$966.1	\$31,426	0.11	Negative
GP-51	Helena Valley Dam	High	126	152	\$1,069.4	\$8,485	0.1	Negative
UC-7	Azeotea Creek and Willow Creek Conveyance Channel	Low	72	240	\$2,215.3	\$30,674	0.1	Negative

Site ID	Site Name/Facility	Data Confidence Level	Installed Capacity (kW)	Annual Production (MWh)	Total Development Cost (\$)	\$/Installed Capacity	BC Ratio with Green	IRR with Green
	Station 1565+00							
	Azeotea Creek and Willow Creek Conveyance Channel							
UC-8	Station 1702+75	Low	68	223	\$2,193.0	\$32,238	0.1	Negative
UC-13	Big Sandy Dam	Medium	286	884	\$9,260.7	\$32,416	0.1	Negative
PN-15	Cold Springs Dam	High	66	131	\$1,308.8	\$19,942	0.09	Negative
	Azeotea Creek and Willow Creek Conveyance Channel							
UC-9	Station 1831+17	Low	60	199	\$2,149.4	\$35,760	0.09	Negative
UC-11	Azotea Tunnel	High	86	222	\$2,284.4	\$26,649	0.09	Negative
UC-164	Stateline Dam	High	282	720	\$8,492.4	\$30,145	0.09	Negative
GP-29	Dickinson Dam	High	7	31	\$229.3	\$32,329	0.07	Negative
GP-85	Nelson Dikes DA	High	48	116	\$1,479.3	\$30,895	0.07	Negative
GP-131	Whalen Diversion Dam	Low	15	53	\$549.3	\$35,641	0.07	Negative
MP-23	Malone Diversion Dam	Medium	44	147	\$1,835.6	\$41,464	0.07	Negative
UC-56	Hammond Diversion Dam	Medium	35	148	\$1,983.3	\$57,350	0.07	Negative
UC-59	Huntington North Dam	High	20	51	\$514.4	\$25,611	0.07	Negative
GP-130	Webster Dam	High	66	164	\$2,694.5	\$40,704	0.06	Negative
UC-46	Fruitgrowers Dam	High	29	124	\$2,116.5	\$72,409	0.06	Negative
GP-91	Norton Dam	High	6	24	\$232.0	\$39,495	0.05	Negative
UC-137	Selig Canal	Low	23	98	\$1,868.6	\$82,287	0.05	Negative
GP-67	Lake Alice No. 2 Dam	Medium	18	50	\$1,254.1	\$69,333	0.04	Negative
UC-135	San Acacia Diversion Dam	Medium	20	86	\$1,895.0	\$94,272	0.04	Negative
UC-197	Weber-Provo Diversion Canal	Medium	173	517	\$13,771.4	\$79,382	0.04	Negative
UC-14	Blanco Diversion Dam	Medium	47	146	\$4,656.2	\$98,200	0.03	Negative
GP-4	Anchor Dam	High	62	126	\$5,656.5	\$90,738	0.02	Negative

Table E-2 Ranked Site Specific Results from Highest Benefit Cost Ratio to Lowest Benefit Cost Ratio Without Green
Incentives

Site ID	Site Name/Facility	Data Confidence Level	Installed Capacity (kW)	Annual Production (MWh)	Total Development Cost (\$)	\$/Installed Capacity	BC Ratio without Green	IRR without Green
GP-146	Yellowtail Afterbay Dam	Medium	9203	68261	\$19,852.4	\$2,157	2.86	16.1%
UC-141	Sixth Water Flow Control	Medium	25800	114420	\$38,227.9	\$1,482	2.84	15.3%
GP-125	Twin Buttes Dam	Low	23124	97457	\$33,654.2	\$1,455	2.46	14.2%
LC-6	Bartlett Dam	Medium	7529	36880	\$15,120.0	\$2,008	2.25	12.0%
	Upper Diamond Fork Flow					· ,		
UC-185	Control Structure	Medium	12214	52161	\$22,058.5	\$1,806	2.22	12.2%
GP-99	Pueblo Dam	High	13027	55620	\$22,193.9	\$1,704	2.2	12.5%
LC-20	Horseshoe Dam	Low	13857	59854	\$30,123.0	\$2,174	1.93	11.0%
PN-6	Arthur R. Bowman Dam	High	3293	18282	\$8,994.9	\$2,732	1.79	10.0%
UC-89	M&D Canal-Shavano Falls	Low	2862	15419	\$7,260.4	\$2,536	1.77	10.1%
GP-56	Huntley Diversion Dam	Medium	2426	17430	\$8,361.0	\$3,446	1.74	9.7%
PN-31	Easton Diversion Dam	High	1057	7400	\$4,006.9	\$3,792	1.58	8.8%
	Spanish Fork Flow Control							
UC-159	Structure	Medium	8114	22920	\$13,147.5	\$1,620	1.57	8.6%
GP-46	Gray Reef Dam	High	2067	13059	\$8,159.3	\$3,947	1.49	7.8%
UC-49	Grand Valley Diversion Dam	Medium	1979	14246	\$9,070.0	\$4,584	1.45	7.7%
UC-52	Gunnison Tunnel	Medium	3830	19057	\$11,385.5	\$2,972	1.45	7.9%
GP-23	Clark Canyon Dam	High	3078	13689	\$7,923.7	\$2,575	1.42	7.6%
UC-19	Caballo Dam	Low	3260	15095	\$10,197.9	\$3,128	1.36	7.1%
PN-95	Sunnyside Dam	Medium	1362	10182	\$6,912.0	\$5,075	1.35	7.0%
UC-147	South Canal, Sta. 181+10, "Site #4"	Medium	3046	15536	\$9,975.1	\$3,275	1.35	7.2%
UC-144	Soldier Creek Dam	High	444	2909	\$1,790.2	\$4,033	1.31	7.0%
GP-52	Helena Valley Pumping Plant	High	2626	9608	\$5,568.1	\$2,120	1.29	6.8%
UC-131	Ridgway Dam	High	3366	14040	\$9,885.1	\$2,937	1.27	6.5%
UC-146	South Canal, Sta 19+ 10 "Site #1"	Medium	2465	12576	\$8,883.4	\$3,603	1.24	6.3%
GP-41	Gibson Dam	High	8521	30774	\$19,928.0	\$2,339	1.23	6.2%
UC-51	Gunnison Diversion Dam	Medium	1435	9220	\$6,934.9	\$4,832	1.2	6.0%
PN-88	Scootney Wasteway	Low	2276	11238	\$8,014.4	\$3,521	1.18	5.9%
UC-150	South Canal, Sta.106+65, "Site #3"	Medium	2224	11343	\$8,399.7	\$3,777	1.18	5.9%
GP-126	Twin Lakes Dam (USBR)	High	981	5648	\$4,192.7	\$4,274	1.17	5.8%
GP-95	Pathfinder Dam	High	743	5508	\$4,476.4	\$6,022	1.16	5.6%
UC-162	Starvation Dam	High	3043	13168	\$10,530.6	\$3,461	1.15	5.6%
GP-43	Granby Dam	High	484	2854	\$2,144.1	\$4,426	1.09	5.2%

Site ID	Site Name/Facility	Data Confidence Level	Installed Capacity (kW)	Annual Production (MWh)	Total Development Cost (\$)	\$/Installed Capacity	BC Ratio without Green	IRR without Green
MP-30	Prosser Creek Dam	High	872	3819	\$3,119.0	\$3,576	1.06	4.9%
LC-21	Imperial Dam	Low	1079	5325	\$4,617.5	\$4,280	1.05	5.0%
UC-179	Taylor Park Dam	High	2543	12488	\$10,991.2	\$4,323	1.05	4.8%
GP-136	Willwood Diversion Dam	High	1062	6337	\$5,741.7	\$5,407	1.03	4.6%
GP-93	Pactola Dam	High	596	2725	\$2,207.5	\$3,706	1.01	4.5%
UC-57	Heron Dam	Medium	2701	8874	\$8,020.4	\$2,970	1	4.4%
UC-154	Southside Canal, Sta 171+ 90 thru 200+ 67 (2 canal drops)	Low	2026	6557	\$5,595.9	\$2,762	0.99	4.2%
UC-148	South Canal, Sta. 472+00, "Site #5"	Medium	1354	6905	\$6,155.4	\$4,548	0.98	4.2%
PN-34	Emigrant Dam	High	733	2619	\$2,209.7	\$3,013	0.93	3.7%
UC-177	Syar Tunnel	Medium	1762	7982	\$8,246.1	\$4,680	0.93	3.8%
PN-104	Wickiup Dam	High	3950	15650	\$15,178.6	\$3,843	0.92	3.7%
UC-174	Sumner Dam	Medium	822	4300	\$4,193.5	\$5,103	0.92	3.7%
GP-34	East Portal Diversion Dam	High	283	1799	\$1,553.3	\$5,495	0.9	3.3%
MP-2	Boca Dam	High	1184	4370	\$4,393.0	\$3,711	0.89	3.4%
PN-12	Cle Elum Dam	High	7249	14911	\$13,692.3	\$1,889	0.89	3.3%
PN-80	Ririe Dam	High	993	3778	\$3,636.9	\$3,661	0.89	3.3%
UC-155	Southside Canal, Sta 349+ 05 thru 375+ 42 (3 canal drops)	Low	1651	5344	\$5,169.8	\$3,131	0.88	3.2%
PN-87	Scoggins Dam	High	955	3683	\$3,665.4	\$3,838	0.86	3.1%
UC-132	Rifle Gap Dam	High	341	1740	\$1,574.9	\$4,621	0.86	2.9%
GP-5	Angostura Dam	Low	947	3218	\$3,179.2	\$3,358	0.84	2.8%
MP-8	Casitas Dam	High	1042	3280	\$3,298.9	\$3,165	0.84	2.8%
PN-59	McKay Dam	High	1362	4344	\$4,274.0	\$3,138	0.83	2.7%
GP-39	Fresno Dam	High	1661	6268	\$6,013.9	\$3,620	0.82	2.7%
GP-128	Vandalia Diversion Dam	Medium	326	1907	\$1,779.4	\$5,461	0.82	2.5%
GP-129	Virginia Smith Dam	Low	1607	9799	\$11,467.6	\$7,137	0.82	2.8%
PN-49	Keechelus Dam	High	2394	6746	\$6,774.2	\$2,830	0.81	2.5%
PN-44	Haystack	High	805	3738	\$3,916.4	\$4,866	0.8	2.4%
UC-72	Joes Valley Dam	High	1624	6596	\$7,764.3	\$4,780	0.8	2.6%
UC-145	South Canal Tunnels	Medium	884	4497	\$5,005.8	\$5,665	0.79	2.4%
MP-24	Marble Bluff Dam	High	1153	5624	\$6,854.2	\$5,943	0.78	2.4%
GP-92	Olympus Dam	High	284	1549	\$1,552.4	\$5,472	0.77	1.9%
GP-117	St. Mary Canal - Drop 4	High	2569	8919	\$9,599.7	\$3,736	0.77	2.2%
GP-42	Glen Elder Dam	High	1008	3713	\$4,260.6	\$4,229	0.76	2.0%

Table E-2 Ranked Site Specific Results from Highest Benefit Cost Ratio to Lowest Benefit Cost Ratio Without Green	
Incentives	

Site ID	Site Name/Facility	Data Confidence Level	Installed Capacity (kW)	Annual Production (MWh)	Total Development Cost (\$)	\$/Installed Capacity	BC Ratio without Green	IRR without Green
LC-15	Gila Gravity Main Canal							
	Headworks	Medium	223	1548	\$1,702.6	\$7,632	0.75	2.0%
UC-117	Paonia Dam	Medium	1582	5821	\$7,092.5	\$4,482	0.74	1.9%
PN-48	Kachess Dam	Medium	1227	3877	\$4,335.9	\$3,535	0.72	1.5%
GP-118	St. Mary Canal - Drop 5	High	1901	7586	\$9,154.5	\$4,817	0.7	1.4%
PN-57	Mason Dam	High	1649	5773	\$7,276.4	\$4,414	0.68	1.1%
UC-166	Steinaker Dam	High	603	1965	\$2,388.4	\$3,959	0.67	0.7%
GP-135	Willwood Canal	Medium	687	3134	\$4,452.3	\$6,481	0.66	1.0%
GP-22	Choke Canyon Dam	Low	194	1199	\$1,506.0	\$7,755	0.65	0.3%
GP-76	Merritt Dam	Low	1631	8438	\$12,641.1	\$7,752	0.64	0.9%
MP-32	Putah Diversion Dam	Medium	363	1924	\$2,815.3	\$7,745	0.62	0.2%
PN-101	Warm Springs Dam	High	1234	3256	\$4,326.6	\$3,507	0.62	0.1%
GP-141	Wyoming Canal - Station 1490	Low	538	2305	\$3,249.5	\$6,042	0.61	Negative
GP-50	Heart Butte Dam	High	294	1178	\$1,562.5	\$5,315	0.6	Negative
GP-120	Sun River Diversion Dam	High	2015	8645	\$12,611.4	\$6,259	0.6	0.4%
PN-97	Thief Valley Dam	Medium	369	1833	\$2,601.0	\$7,050	0.6	Negative
UC-22	Crawford Dam	High	303	1217	\$1,592.4	\$5,264	0.6	Negative
GP-24	Corbett Diversion Dam	High	638	2846	\$4,782.3	\$7,500	0.56	Negative
UC-126	Red Fleet Dam	High	455	1904	\$3,031.9	\$6,666	0.55	Negative
UC-140	Silver Jack Dam	High	748	2913	\$4,863.9	\$6,504	0.54	Negative
GP-18	Carter Lake Dam No. 1	High	842	2266	\$3,642.7	\$4,328	0.53	Negative
GP-138	Woods Project, Greenfield Main Canal Drop	Low	746	2680	\$4,131.6	\$5,540	0.53	Negative
PN-41	Golden Gate Canal	Low	514	2293	\$3,991.6	\$7,771	0.53	Negative
GP-114	St. Mary Canal - Drop 1	High	1212	4838	\$7,901.8	\$6,518	0.52	Negative
PN-56	Mann Creek	High	495	2097	\$3,554.4	\$7,174	0.52	Negative
UC-116	Outlet Canal	Medium	586	1839	\$3,264.8	\$5,570	0.49	Negative
GP-137	Wind River Diversion Dam	High	398	1595	\$2,921.2	\$7,344	0.48	Negative
MP-17	John Franchi Dam	Low	469	1863	\$3,624.5	\$7,728	0.48	Negative
UC-190	Vega Dam	Medium	548	1702	\$3,012.5	\$5,499	0.48	Negative
GP-115	St. Mary Canal - Drop 2	High	974	3887	\$7,141.0	\$7,333	0.47	Negative
GP-10	Belle Fourche Dam	High	497	1319	\$2,376.3	\$4,786	0.46	Negative
GP-145	Wyoming Canal - Station 997	Low	287	1228	\$2,224.9	\$7,751	0.46	Negative
GP-116	St. Mary Canal - Drop 3	High	887	3538	\$6,832.5	\$7,707	0.44	Negative
GP-108	Shadow Mountain Dam	High	119	777	\$1,471.5	\$12,316	0.43	Negative
UC-136	Scofield Dam	High	266	906	\$1,780.5	\$6,700	0.42	Negative

Site ID	Site Name/Facility	Data Confidence Level	Installed Capacity (kW)	Annual Production (MWh)	Total Development Cost (\$)	\$/Installed Capacity	BC Ratio without Green	IRR without Green
GP-75	Medicine Creek Dam	High	276	1001	\$2,103.6	\$7,631	0.41	Negative
LC-24	Laguna Dam	Low	125	566	\$1,100.0	\$8,794	0.41	Negative
UC-36	East Canyon Dam	High	929	3549	\$8,271.6	\$8,907	0.41	Negative
GP-28	Deerfield Dam	High	138	694	\$1,392.4	\$10,109	0.4	Negative
UC-6	Avalon Dam	High	230	1031	\$2,260.8	\$9,818	0.4	Negative
GP-15	Bull Lake Dam	High	933	2302	\$5,327.8	\$5,709	0.39	Negative
GP-140	Wyoming Canal - Station 1016	Low	220	939	\$2,036.0	\$9,275	0.39	Negative
UC-93	Meeks Cabin Dam	High	1586	4709	\$11,641.2	\$7,341	0.38	Negative
GP-31	Dodson Diversion Dam	Low	140	566	\$1,106.9	\$7,895	0.37	Negative
UC-62	Hyrum Dam	High	491	2052	\$5,081.3	\$10,346	0.37	Negative
UC-124	Platoro Dam	High	845	3747	\$10,106.2	\$11,964	0.36	Negative
GP-107	Shadehill Dam	High	322	1536	\$4,128.1	\$12,806	0.35	Negative
GP-47	Greenfield Project, Greenfield Main Canal Drop	Low	238	830	\$1,848.6	\$7,779	0.34	Negative
MP-18	Lake Tahoe Dam	High	287	893	\$2,494.8	\$8,686	0.34	Negative
GP-8	Barretts Diversion Dam	Medium	102	546	\$1,391.4	\$13,596	0.33	Negative
GP-54	Horsetooth Dam	High	350	847	\$2,202.8	\$6,288	0.32	Negative
GP-142	Wyoming Canal - Station 1520	Low	175	749	\$2,002.2	\$11,454	0.32	Negative
UC-67	Inlet Canal	Medium	252	966	\$2,596.6	\$10,320	0.32	Negative
PN-2	Agency Valley	High	1179	3941	\$11,353.3	\$9,626	0.31	Negative
UC-187	Upper Stillwater Dam	Medium	581	1904	\$6,064.5	\$10,431	0.31	Negative
GP-103	Saint Mary Diversion Dam	High	177	720	\$1,833.7	\$10,340	0.3	Negative
UC-16	Brantley Dam	Medium	210	697	\$1,991.3	\$9,481	0.3	Negative
PN-43	Harper Dam	Low	434	1874	\$5,901.2	\$13,606	0.29	Negative
PN-58	Maxwell Dam	Medium	117	644	\$2,075.4	\$17,766	0.28	Negative
GP-132	Willow Creek Dam	High	272	863	\$1,239.9	\$14,980	0.27	Negative
PN-52	Little Wood River Dam	High	1493	4951	\$17,931.2	\$12,013	0.27	Negative
GP-144	Wyoming Canal - Station 1972	Low	285	1218	\$4,237.5	\$14,860	0.26	Negative
PN-105	Wild Horse - BIA	High	267	791	\$2,873.0	\$10,764	0.26	Negative
GP-37	Fort Shaw Diversion Dam	Medium	183	1111	\$4,029.4	\$22,014	0.25	Negative
GP-58	James Diversion Dam	High	193	825	\$3,357.8	\$17,377	0.23	Negative
GP-59	Jamestown Dam	High	113	338	\$1,166.5	\$10,338	0.23	Negative
GP-122	Trenton Dam	High	208	570	\$2,180.7	\$10,461	0.23	Negative
PN-20	Crane Prairie	High	306	1845	\$7,751.3	\$25,317	0.23	Negative
UC-102	Nambe Falls Dam	Low	147	593	\$2,373.7	\$16,097	0.23	Negative
GP-68	Lake Sherburne Dam	Medium	898	1502	\$5,934.4	\$6,605	0.22	Negative

Table E-2 Ranked Site Specific Results from Highest Benefit Cost Ratio to Lowest Benefit Cost Ratio Without Green	
Incentives	

Site ID	Site Name/Facility	Data Confidence Level	Installed Capacity (kW)	Annual Production (MWh)	Total Development Cost (\$)	\$/Installed Capacity	BC Ratio without Green	IRR without Green
GP-98	Pishkun Dike - No. 4	High	610	1399	\$5,574.0	\$9,141	0.22	Negative
PN-1	Agate Dam	High	89	264	\$821.5	\$9,267	0.22	Negative
UC-23	Currant Creek Dam	High	146	1003	\$4,611.2	\$31,659	0.21	Negative
GP-35	Enders Dam	High	267	762	\$3,492.3	\$13,082	0.2	Negative
00.00	Johnson Project, Greenfield	NA - diame	000	505	#0.000.0	¢10.050		Manathur
GP-60	Main Canal Drop	Medium	203	525	\$2,038.9	\$10,052	0.2	Negative
MP-1	Anderson-Rose Dam	Medium	29	126	\$377.7	\$12,916	0.2	Negative
MP-44	Upper Slaven Dam	Medium	158	720	\$3,474.0	\$21,974	0.2	Negative
UC-28	Dolores Tunnel	Medium	103	515	\$2,277.1	\$22,077	0.2	Negative
UC-100	Moon Lake Dam	High	634	1563	\$7,328.5	\$11,564	0.2	Negative
UC-169	Stillwater Tunnel	Medium	413	1334	\$6,342.4	\$15,340	0.2	Negative
PN-10	Bumping Lake	High	521	2200	\$11,275.7	\$21,650	0.19	Negative
PN-24	Deadwood Dam	High	871	3563	\$19,510.1	\$22,402	0.19	Negative
UC-84	Lost Creek Dam	High	410	1295	\$6,599.2	\$16,082	0.19	Negative
PN-53	Lytle Creek	Low	50	329	\$1,603.2	\$32,368	0.18	Negative
UC-98	Montrose and Delta Canal	Low	96	478	\$2,343.8	\$24,452	0.18	Negative
MP-33	Rainbow Dam	Medium	190	998	\$5,915.9	\$31,116	0.17	Negative
PN-37	Fish Lake	High	102	235	\$1,176.0	\$11,555	0.17	Negative
MP-3	Bradbury Dam	Medium	142	521	\$3,093.8	\$21,749	0.16	Negative
UC-44	Fort Sumner Diversion Dam	High	75	378	\$2,213.6	\$29,472	0.16	Negative
PN-65	Ochoco Dam	High	69	232	\$1,286.3	\$18,532	0.15	Negative
UC-15	Blanco Tunnel	Medium	276	849	\$5,526.7	\$20,041	0.15	Negative
GP-12	Bonny Dam	High	36	238	\$1,476.8	\$40,837	0.14	Negative
GP-38	Foss Dam	Low	49	242	\$1,646.7	\$33,582	0.13	Negative
MP-15	Gerber Dam	Medium	248	760	\$5,358.0	\$21,621	0.13	Negative
MP-31	Putah Creek Dam	Medium	28	166	\$1,047.7	\$38,062	0.13	Negative
PN-100	Unity Dam	Medium	307	1329	\$9,462.0	\$30,808	0.13	Negative
UC-196	Weber-Provo Canal	Low	424	1844	\$14,266.2	\$33,648	0.13	Negative
GP-63	Kirwin Dam	High	179	466	\$3,578.9	\$20,036	0.12	Negative
GP-102	Red Willow Dam	High	21	148	\$780.7	\$37,427	0.12	Negative
GP-143	Wyoming Canal - Station 1626	Low	52	195	\$1,337.4	\$25,531	0.12	Negative
PN-9	Bully Creek	High	313	1065	\$8,062.9	\$25,773	0.12	Negative
GP-14	Bretch Diversion Canal	Low	24	111	\$712.3	\$29,778	0.11	Negative
PN-78	Reservoir "A"	High	45	169	\$1,262.2	\$27,968	0.11	Negative
UC-4	Angostura Diversion	High	33	91	\$564.2	\$17,183	0.11	Negative
UC-5	Arthur V. Watkins Dam	High	31	122	\$966.1	\$31,426	0.1	Negative

Site ID	Site Name/Facility	Data Confidence Level	Installed Capacity (kW)	Annual Production (MWh)	Total Development Cost (\$)	\$/Installed Capacity	BC Ratio without Green	IRR without Green
	Azeotea Creek and Willow							
	Creek Conveyance Channel							
UC-7	Station 1565+00	Low	72	240	\$2,215.3	\$30,674	0.1	Negative
GP-51	Helena Valley Dam	High	126	152	\$1,069.4	\$8,485	0.09	Negative
	Azeotea Creek and Willow Creek Conveyance Channel							
UC-8	Station 1702+75	Low	68	223	\$2,193.0	\$32,238	0.09	Negative
UC-11	Azotea Tunnel	High	86	222	\$2,284.4	\$26,649	0.09	Negative
UC-13	Big Sandy Dam	Medium	286	884	\$9,260.7	\$32,416	0.09	Negative
PN-15	Cold Springs Dam	High	66	131	\$1,308.8	\$19,942	0.08	Negative
	Azeotea Creek and Willow Creek Conveyance Channel							
UC-9	Station 1831+17	Low	60	199	\$2,149.4	\$35,760	0.08	Negative
UC-164	Stateline Dam	High	282	720	\$8,492.4	\$30,145	0.08	Negative
MP-23	Malone Diversion Dam	Medium	44	147	\$1,835.6	\$41,464	0.07	Negative
UC-56	Hammond Diversion Dam	Medium	35	148	\$1,983.3	\$57,350	0.07	Negative
UC-59	Huntington North Dam	High	20	51	\$514.4	\$25,611	0.07	Negative
GP-29	Dickinson Dam	High	7	31	\$229.3	\$32,329	0.06	Negative
GP-85	Nelson Dikes DA	High	48	116	\$1,479.3	\$30,895	0.06	Negative
GP-130	Webster Dam	High	66	164	\$2,694.5	\$40,704	0.06	Negative
GP-131	Whalen Diversion Dam	Low	15	53	\$549.3	\$35,641	0.06	Negative
GP-91	Norton Dam	High	6	24	\$232.0	\$39,495	0.05	Negative
UC-46	Fruitgrowers Dam	High	29	124	\$2,116.5	\$72,409	0.05	Negative
UC-137	Selig Canal	Low	23	98	\$1,868.6	\$82,287	0.05	Negative
UC-135	San Acacia Diversion Dam	Medium	20	86	\$1,895.0	\$94,272	0.04	Negative
UC-197	Weber-Provo Diversion Canal	Medium	173	517	\$13,771.4	\$79,382	0.04	Negative
GP-67	Lake Alice No. 2 Dam	Medium	18	50	\$1,254.1	\$69,333	0.03	Negative
UC-14	Blanco Diversion Dam	Medium	47	146	\$4,656.2	\$98,200	0.03	Negative
GP-4	Anchor Dam	High	62	126	\$5,656.5	\$90,738	0.02	Negative

Appendix E Site Evaluation Results

This page intentionally left blank.

	1					1			1	
		A-Drop Project, Greenfield								
Facility Name		Main Canal Drop	Altus Dam	Anchor Dam	Angostura Dam	Barretts Diversion Dam	Belle Fourche Dam	Bonny Dam	Box Butte Dam	Bretch Diversion Canal
Agency		Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation
Analysis Performed by		CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM
Project Location (State)		Montana	Oklahoma	Wyoming	South Dakota	Montana	South Dakota	Colorado	Nebraska	Oklahoma
Transmission Voltage	kV miles	115 2.48		115 15.95				115		
T-Line Length Fish and Wildlife Mitigation	miles	2.48 No	5.17 No	No	No	1.44 No	0.35 No	3.58 No	5.58 No	1.34 No
Recreation Mitigation		No	No	No	No	No	No	No	No	No
Historical & Archaeological		No	No	Yes	No	No	No	No	No	No
Water Quality Monitoring		No	No	No	No	Yes	No	No	No	No
Fish Passage Required		No	No	No	No	No	No	No	No	No
Results										
Input Data Analysis										
Data Set	years	6	20				22	30		13
Max Head	ft	34.0	178.9	123.5				74.4		
Min Head	ft	34.0	0.0			7 15.5		48.0		
	cfs	3,842	5,860	377	23,525	5 471	945	133	167	21,100
Min Flow	cfs	0	0	0		0 0	0	3	0	0
Turbine Selection Analysis		development at 30% flow							Site has seasonal flows about 1-2 months per year; flows are too low for hydropower development at 30% flow exceedance	
Selected Turbine Type				Low Head	Francis	Kaplan	Kaplan	Low Head		Low Head
Selected Design Head	ft			60				70		8
Selected Design Flow	cfs			17	110	106	160	8	3	51
Generator Speed	rpm			600				600		600
Max Head Limit	ft			75.3				87.8		9.6
Min Head Limit	ft			39.1				45.7	7	5.0
	cfs			17				8	8	51
Min Flow Limit	cfs			3	22	21	32	2	2	10
Power Generation Analysis Installed Capacity Plant Factor	kW			62				36 0.77		24
Projected Monthly Production:				0.23	0.40	0.02	0.51	0.11		0.34
January	MWH			1	44	. 79	0	18	3	9
February*	мwн			1	59	70	0	18	3	9
March	MWH			3	144	81	6	19		10
April	MWH			13			23	19)	11
Мау	MWH			23			131	21		11
June	MWH			17			327	21		14
July	MWH			16			366	22		9
August	MWH			14 15			276	22		6
	MWH MWH			15			182	21		8
November	MWH				43					8
	MWH			3	37			18		9
	мwн			126				238		111
For non-leap year Benefit/Cost Analysis Projected expenditure to implement project									•	
Total Construction Cost Annual O&M Cost	ļ			\$ 5,656,540						\$ 712,303
Projected Total Cost over 50 year period	<u> </u>	<u> </u>		\$ 130,033 \$ 7,459,993						\$ 35,664 \$ 1,275,339
Projected revenue after implementation of project										
Power generation income for 2014 to 2060 Green Energy Sellback income for 2014 to 2060				\$ 451,407 \$ 15,202				\$ 851,997 \$ 28,777		\$ 409,255 \$ 13,453
Projected Total Revenue over 50 year period (with Green Incentives)				\$ 15,202 \$ 170,867				\$ 28,777 \$ 324,805		\$ 13,453 \$ 154,571
Projected Total Revenue over 50 year period (w/o Green Incentives)										
Benefit/Cost Ratio (with Green incentives)				\$ 160,432 0.02				\$ 305,052 0.15		\$ 145,336 0.12
Benefit/Cost Ratio (w/o Green incentives)	 			0.02				0.10		0.12
Internal Rate of Return (with Green incentives)				Negative				Negative		Negative
Internal Rate of Return (w/o Green incentives)				Negative	2.8%	Negative		Negative		Negative
	<u>n</u>			-			-			-
Installed Cost \$ per kW				\$ 90,738	\$ 3,358	\$ 13,596	\$ 4,786	\$ 40,837		\$ 29,778

	r									
Facility Name		Bull Lake Dam	Carter Lake Dam No. 1	Cedar Bluff Dam	Cheney Dam	Choke Canyon Dam	Clark Canyon Dam	Corbett Diversion Dam	Deerfield Dam	Dickinson Dam
Agency		Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation
Analysis Performed by Project Location (State)		CDM	CDM Colorado	CDM Kansas	CDM Kansas	CDM Texas	CDM Montana	CDM	CDM South Dakota	CDM North Dakota
Froject Eocation (State)		Wyoming	Colorado	Kalisas	Ralisas	Texas	WOIlland	Wyoming	South Dakota	North Dakota
Transmission Voltage	kV	69	13.8	115	138	138	138	69	69	69
T-Line Length	miles	4.68		10.68		1.44	0.33			
Fish and Wildlife Mitigation		No	No	No	No	No	No	No	No	No
Recreation Mitigation		No	No	No	No	No	No	No	No	No
Historical & Archaeological		Yes	No	No	No	No	No	No	No	Yes
Water Quality Monitoring		No	No	No	No	No	Yes	No	No	No
Fish Passage Required		No	No	No	No	No	No	Yes	No	No
Results Input Data Analysis										
Data Set	years	37	28	18	30	17	41		30	53
Max Head	ft	65.3		131.7	39.4		110.7	12.0		31.7
Min Head	ft	12.3		49.8	26.0	16.8	36.0	12.0		17.6
	cfs	3,091	613	400		1,820	2,586	7,447		4,531
Min Flow	cfs	0	0	0	0	0	23	(0 0	0
Turbine Selection Analysis				Site has seasonal flows about 1-2 months per year; flows are too low for hydropower development at 30% flow exceedance						
Selected Turbine Type	1	Kaplan	Francis		Low Head	Francis	Francis	Kaplan	Francis	Low Head
Selected Design Head	ft	50			32		88	12		
Selected Design Flow	cfs	299			2	38	484	850	18	4
Generator Speed	rpm	600			600		300	600		600
Max Head Limit	ft	62.3	177.5		39.7	88.4	110.1	15.0		33.8
Min Head Limit	ft	32.4	92.3		20.6	46.0	57.2	7.8		17.6
Max Flow Limit Min Flow Limit	cfs cfs	299	82 16		2	38	484 97	170		4
Power Generation Analysis Installed Capacity Plant Factor	kW	933 0.29	<u> </u>		3	 194 0.72	3,078 0.52	638		
Projected Monthly Production:										
	MWH	28			1	95	744		32	
	MWH	18			1	91	683		32	
	MWH	18			1	97 98	688 832	 194	52	3
April May	MWH MWH	95 267			2	98	1,566	496		3
June	MWH	324			2	99	1,926	501		4
July	MWH	269	503		1	107	1,900	519		4
August	мwн	563			1	105	1,596	515	5 73	3
	MWH	536	297		1	106	1,107			2
	мwн	129			1	100	862			2
	MWH	31			1	101	917		40	2
	MWH MWH	25 2,302			1	99 1,199	866 13,689		31 694	
* For non-leap year Benefit/Cost Analysis Projected expenditure to implement project		2,502	2,200		<u> </u>	1,100	13,000	2,04		
Total Construction Cost		\$ 5,327,772	\$ 3,642,689		\$ 2,721,996	\$ 1,505,996	\$ 7,923,658	\$ 4,782,286	\$ 1,392,415	\$ 229,309
Annual O&M Cost	İ	\$ 160,581			\$ 72,015	\$ 60,268				
Projected Total Cost over 50 year period		\$ 7,690,016	\$ 5,542,710		\$ 3,754,264		\$ 11,826,515	\$ 6,530,462	\$ 2,241,477	\$ 648,939
Projected revenue after implementation of project Power generation income for 2014 to 2060		\$ 8,356,187			\$ 44,087					
Green Energy Sellback income for 2014 to 2060 Projected Total Revenue over 50 year period (with Green		\$ 278,570	\$ 274,161		\$ 1,458	\$ 145,205	\$ 1,656,940	\$ 344,353	\$ 83,969	\$ 3,772
Incentives)		\$ 3,158,576	\$ 3,119,104		\$ 16,661	\$ 1,685,896	\$ 17,975,609	\$ 3,885,070	\$ 965,363	\$ 43,458
Projected Total Revenue over 50 year period (w/o Green Incentives)		\$ 2,967,353	\$ 2,930,908		\$ 15,660	\$ 1,586,221	\$ 16,838,213	\$ 3,648,690	\$ 907,723	\$ 40,869
Benefit/Cost Ratio (with Green incentives)	 	\$ 2,967,353			\$ 15,660		\$ 10,030,213 1.52			
Benefit/Cost Ratio (w/o Green incentives)	1	0.39			0.00		1.32			
Internal Rate of Return (with Green incentives)	1		Negative		Negative	0.7%	8.6%		Negative	Negative
Internal Rate of Return (w/o Green incentives)	İ	Ĵ	Negative		Negative	0.3%		Negative	Negative	Negative
								-		
Installed Cost \$ per kW		\$ 5,709	\$ 4,328		\$ 937,996	\$ 7,755	\$ 2,575	\$ 7,500	\$ 10,109	\$ 32,329

	1]
Facility Name		Dodson Diversion Dam	East Portal Diversion Dam	Enders Dam	Fort Cobb Dam	Fort Shaw Diversion Dam	Foss Dam	Fresno Dam	Gibson Dam	Glen Elder Dam
Agency		Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation
Analysis Performed by		CDM Montana	CDM Colorado	CDM Nebraska	CDM Oklahoma	CDM Montana	CDM Oklahoma	CDM Montana	CDM Montana	CDM
Project Location (State)		Montana	Colorado	Nepraska	Okianoina	Montana	Oklanoma	Montana	Montana	Kansas
Transmission Voltage	kV	138	13.8	115	115	69	115	69	69	115
T-Line Length	miles	0.42	0.01	6.73					19.11	3.35
Fish and Wildlife Mitigation	iiiico	No	No	No	No	No	No	No	No	No
Recreation Mitigation		No	No	No	No	No	No	No	No	No
Historical & Archaeological		Yes	No	No	No	No	No	No	No	No
Water Quality Monitoring		No	No	No	No	No	No	No	No	No
Fish Passage Required		No	No	No	No	No	No	No	No	No
Results										
Input Data Analysis										
Data Set	years	15	31	54	30	11		58	66	
Max Head	ft	26.0	10.0	75.9	20.0			59.3	173.2	154.5
Min Head	ft	26.0	10.0	27.0	20.0			12.4	12.7	50.2
Max Flow	cfs	6,445	569	1,107	1,270		1,370	6,554	51,860	5,001
Min Flow	cfs	0	0	0) 19	2	0	0	0
Turbine Selection Analysis										
Selected Turbine Type		Kaplan	Kaplan	Francis	Low Head	Kaplan	Low Head	Kaplan	Francis	Francis
Selected Design Head	ft	26	10	62		9	35	47	140	69
Selected Design Flow	cfs	86	452 600	60		5 325 600		560 300	845 300	201
Generator Speed Max Head Limit	rpm 44	32.5	12.5	77.6	25.0			59.3	300 174.4	600 86.8
Min Head Limit	ft	16.9	6.5	40.3				30.8	90.7	45.1
	cfs	86	452			325			845	
	cfs	17	90	12		65		112	169	40
	kW	140		<u>267</u> 0.33		183		<u> </u>	8,521 0.42	1,008 0.43
Plant Factor Projected Monthly Production:		0.47	0.74	0.33	0.72	0.71	0.56	0.44	0.42	0.43
	мwн	30	199	35		138	22	10	477	398
	мwн	36	180	40		100			420	337
,	MWH	84	160	46	3	95			608	338
April	мwн	42	116	56	3	82	25	580	2,461	285
May	мwн	50	139	64	3	100	24	1,229	5,961	333
June	MWH	64	113	91	3	3 126	25	1,245	7,092	388
	MWH	60	165	166		37	18	1,188	6,469	427
e e e e e e e e e e e e e e e e e e e	MWH	52	165	119		3 44		973	3,735	
	мwн	35				51			1,545	204
	MWH	46	102	35		83			669	77
	MWH MWH	43	127 192	30 30		102 128		24	714 624	
	MWH	566							30,774	
* For non-leap year Benefit/Cost Analysis Projected expenditure to implement project			1,100	102				0,200	50,114	
Total Construction Cost		\$ 1,106,914	\$ 1,553,341	\$ 3,492,274	\$ 2,234,608	\$ 4,029,441	\$ 1,646,694	\$ 6,013,912	\$ 19,928,044	\$ 4,260,608
Annual O&M Cost	1	\$ 49,679		\$ 100,748	\$ 62,458	\$ 107,625				\$ 144,180
Projected Total Cost over 50 year period		\$ 1,881,857								
Projected revenue after implementation of project Power generation income for 2014 to 2060		\$ 1,977,569								
Green Energy Sellback income for 2014 to 2060	L	\$ 68,480	\$ 217,775	\$ 92,201	\$ 4,210	\$ 134,556	\$ 29,350	\$ 758,381	\$ 3,724,023	\$ 449,513
Projected Total Revenue over 50 year period (with Green Incentives)		¢ 740.500	¢ 0.405.000	¢ 4.070.000	¢ 40.070	¢ 4.75.404	¢ 000.000	¢ 7.004.700	¢ 00.705.054	¢ 5.040.000
Incentives) Projected Total Revenue over 50 year period (w/o Green		\$ 748,580	\$ 2,465,030	\$ 1,073,808	\$ 48,673	\$ 1,475,461	\$ 338,228	\$ 7,961,798	\$ 38,795,651	\$ 5,216,360
Incentives)		\$ 701,572	\$ 2,315,540	\$ 1,010,517	\$ 45,783	\$ 1,383,096	\$ 318,081	\$ 7,441,211	\$ 36,239,315	\$ 4,907,794
Benefit/Cost Ratio (with Green incentives)	İ	0.40	0.96	0.22				0.88	1.32	0.81
Benefit/Cost Ratio (w/o Green incentives)	Ì	0.37	0.90	0.20					1.23	
Internal Rate of Return (with Green incentives)		Negative	3.9%	Negative	Negative	Negative	Negative	3.2%	7.1%	2.4%
Internal Rate of Return (w/o Green incentives)		Negative		Negative	Negative	Negative	Negative	2.7%	6.2%	2.0%
					-					
Installed Cost \$ per kW		\$ 7,895	\$ 5,495	\$ 13,082	\$ 398,748	\$ 22,014	\$ 33,582	\$ 3,620	\$ 2,339	\$ 4,229

		Г — Г				1			1	
				Greenfield Project, Greenfield						
Facility Name		Granby Dam	Gray Reef Dam	Main Canal Drop	Heart Butte Dam	Helena Valley Dam	Helena Valley Pumping Plant	Horsetooth Dam	Hunter Creek Diversion Dam	Huntley Diversion Dam
Agency		Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation
Analysis Performed by		CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM
Project Location (State)		Colorado	Wyoming	Montana	North Dakota	Montana	Montana	Colorado	Colorado	Montana
-		(a.a)								
	kV miles	13.8 1.23	115	69 1.49			69 0.56	115 2.47		
T-Line Length Fish and Wildlife Mitigation	miles	Yes	0.01 No	1.49 No	No U.SU	0.56 No	0.56 No	2.47 No	2.47 No	5.00 No
Recreation Mitigation		No	No	No	No	No	No	No	Yes	No
Historical & Archaeological		No	No	No	No	No	No	No	No	No
Water Quality Monitoring		No	No	No	No	No	No	No	No	No
Fish Passage Required		No	Yes	No	No	No	No	No	No	No
Results										
Input Data Analysis										
Data Set	years	31	44		56		30	31		
Max Head	ft	214.9	24.6			23.0	173.0	135.1		
Min Head	ft	126.5	6.1	38.0			61.0	0.0		8.0
Max Flow Min Flow	cfs cfs	430	8,877 113	150	4,100	552	467	1,402	2 109	80,100 800
MIII FIOW	CIS	0	113		, C	0	0	L. L. L. L. L. L. L. L. L. L. L. L. L. L	0	800
Turbine Selection Analysis									Site has seasonal flows about 1-2 months per year; flows are too low for hydropower development at 30% flow exceedance	
Selected Turbine Type		Pelton	Kaplan	Kaplan	Francis	Kaplan	Francis	Francis		Kaplan
Selected Design Head	ft	202	22				140	119		8
5	cfs	33	1,504	100		197	260 600	41		4,850
Generator Speed Max Head Limit	rpm #	222.1	600 27.5	47.5			174.7	148.5		600 10.0
Min Head Limit	ft	131.3	14.3	24.7		6.6	90.8	77.2		5.2
	cfs	33	1,504	100			260	41		4,850
	cfs	7	301	20			52	8	3	970
						-				
Power Generation Analysis						-				
Installed Capacity	kW	484	2,067	238			2,626	350		2,426
Plant Factor		0.69	0.74	0.41	0.47	0.14	0.43	0.28	3	0.84
Projected Monthly Production:	MWH	198	819	0	36	<u>م</u>	0		N	1,016
	MWH	179	769		39		0	(·	961
	MWH	186	930	0	82		43	(1,108
April	мwн	190	1,063	0	117	6	1,025	32	2	1,471
Мау	мwн	309	1,219	102			1,641	125		1,961
June	MWH	326	1,372	196			1,824	104		1,997
July	MWH	327	1,564	196			1,853	196		1,939
August	MWH	309	1,463	196			1,835	182		1,489
	мwн мwн	194 223	1,127 985	135	104 69		1,329 36	125		1,364 1,568
	MWH	223	902		48		22			1,588
	MWH	204	848		45		0			1,139
	мwн	2,854	13,059	830	1,178	152	9,608	847	7	17,430
* For non-leap year Benefit/Cost Analysis Projected expenditure to implement project			• • • • • • • • • • • • • • • • • • •		1 c					0.000.070
Total Construction Cost Annual O&M Cost		\$ 2,144,126 \$ \$ 80,601 \$						2,202,828 80,031		\$ 8,360,976 \$ 269,072
Projected Total Cost over 50 year period	l	\$ 3,373,020						3,417,010	I	\$ 209,072 \$ 12,365,360
		ψ 3,373,020	φ 11,203,011	¥ 2,301,423	φ 2,505,414	φ 1,031,040	ψ 0,505,041 ¥	3,417,010		φ 12,303,300
Projected revenue after implementation of project		A	*				· · · · · · · · · · · · · · · · · · ·		1	A
Power generation income for 2014 to 2060 Green Energy Sellback income for 2014 to 2060		\$ 10,249,608 \$ 345,484								\$ 60,727,391 \$ 2,400,838
Projected Total Revenue over 50 year period (with Green		\$ 345,484	\$ 1,580,790	\$ 100,453	\$ 142,581	\$ 18,365	\$ 1,162,602 \$	102,507		\$ 2,109,838
Incentives)		\$ 3,906,709	\$ 17,881,395	\$ 1,068,046	\$ 1,645,011	\$ 174,977	\$ 12,300,829 \$	1,170,832		\$ 22,996,002
Projected Total Revenue over 50 year period (w/o Green										
Incentives)		\$ 3,669,554						1,100,467		\$ 21,547,717
Benefit/Cost Ratio (with Green incentives) Benefit/Cost Ratio (w/o Green incentives)		1.16 1.09	1.58					0.34		1.86 1.74
Internal Rate of Return (with Green incentives)		1.09 5.9%	1.49 8 7%	0.34 Negative	0.60 Negative	0.09 Negative	1.29 7.8% N	0.32	<u>.</u>	1.74 10.9%
Internal Rate of Return (with Green incentives)		5.9%		Negative	Negative	Negative	6.8% N			9.7%
		5.270	1.076				0.0 %	-3	1	5.176
Installed Cost \$ per kW		\$ 4,426	\$ 3,947	\$ 7,779	\$ 5,315	\$ 8,485	\$ 2,120 \$	6,288		\$ 3,446

	1									
				Johnson Project, Greenfield			Knights Project, Greenfield			
Facility Name		James Diversion Dam	Jamestown Dam	Main Canal Drop	Keyhole Dam	Kirwin Dam	Main Canal Drop	Lake Alice Lower 1-1/2 Dam	Lake Alice No. 2 Dam	Lake Sherburne Dam
Agency		Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation
Analysis Performed by		CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM
Project Location (State)		South Dakota	North Dakota	Montana	Wyoming	Kansas	Montana	Nebraska	Nebraska	Montana
		-					-	-	-	-
Transmission Voltage	kV	138	69	69	115	115	115	115	115	115
T-Line Length	miles	5.87	1.05	2.80	5.56	7.98	0.30	4.84	3.11	6.91
Fish and Wildlife Mitigation		No	No	No	No	No	No	No	No	Yes
Recreation Mitigation		No	Yes	No	No	No	No	No	No	No
Historical & Archaeological		No	No	No	No	No	No	No	No	Yes
Water Quality Monitoring		No	No	No	No	No	No	No	No	No
Fish Passage Required		No	No	No	No	No	No	No	No	No
Results										
Input Data Analysis	-				_					
Data Set	years	30	30	6	53	12	6	19.0		
Max Head	ft	5.3	54.1	46.0	78.4	76.1	60.0		1.5	
Min Head	ft ofo	5.3	20.9 1,807	46.0 385	24.4 1,347	41.0 595	60.0	0.0	1.5	10.2 2,340
Max Flow Min Flow	cfs cfs	22,800	1,807	385	1,34/	595	163	500	622	∠,340
	013	5	5		5					5
Turking Option Application					Site has seasonal flows about 2-3 months per year; flows are too low for hydropower development at 30% flow exceedance		Site has seasonal flows about 4 months per year; flows are too low for hydropower development at 30% flow exceedance	Site has no head for hydropower development		
Turbine Selection Analysis	1	Kanlan	Frencia			Frencia			Law Used	Kanlan
Selected Turbine Type Selected Design Head	f+	Kaplan	Francis 31	Francis 46		Francis 69			Low Head	Kaplan 45
Selected Design Flow	cfs	583		40		36				-
Generator Speed	rpm	600	600	600		600			600	
Max Head Limit	ft	6.6	39.0	57.5		85.8			3.7	
Min Head Limit	ft	3.4	20.3	29.9		44.6			1.9	
Max Flow Limit	cfs	583	50	61		36			101	
Min Flow Limit	cfs	117	10	12		7			20	
	•	-			•		•	•	•	
Power Generation Analysis										
Installed Capacity	kW	193	113	203		179			18	
Plant Factor		0.50	0.35	0.30		0.30			0.32	0.19
Projected Monthly Production:	-									
	MWH	17	3	0		31			0	0
February*	MWH	15	3	0		34			0	1
March	MWH	60	7	0		31			0	75
April	MWH MWH	109 107	18 36	0 91		26 35			2	151 281
May June	MWH	107		146		39			8	192
July	MWH	93	49	146		104			11	
August	MWH	81	47	140		88			12	
-	MWH	68	49	32		14			9	265
October	мwн	68	39	0		11			2	12
November	MWH	62	24	0		11			0	18
December	мwн	38	7	0		11			0	7
Annual production*	MWH	825	338	525		466			50	1,502
* For non-leap year Benefit/Cost Analysis Projected expenditure to implement project										
Total Construction Cost	1	\$ 3,357,799	\$ 1,166,450	\$ 2,038,894		\$ 3,578,864			\$ 1,254,077	\$ 5,934,412
Annual O&M Cost	1	\$ 95,692		\$ 70,693		\$ 98,088			\$ 45,329	
Projected Total Cost over 50 year period		\$ 4,750,577				\$ 4,995,357			\$ 1,941,256	
	-				-		-	-	-	
Projected revenue after implementation of project										
Power generation income for 2014 to 2060		\$ 3,024,102				\$ 1,742,466			\$ 185,969	· · · · ·
Green Energy Sellback income for 2014 to 2060		\$ 99,888	\$ 40,877	\$ 63,545		\$ 56,381			\$ 6,040	\$ 181,697
Projected Total Revenue over 50 year period (with Green		¢	¢	¢		¢			¢ 70.1-5	¢ 4 050 055
Incentives) Projected Total Revenue over 50 year period (w/o Green	<u> </u>	\$ 1,142,945	\$ 473,417	\$ 661,275		\$ 657,226			\$ 70,173	\$ 1,956,977
Incentives)	1	\$ 1,074,378	\$ 445,357	\$ 617,655		\$ 618,524			\$ 66,027	\$ 1,832,252
Benefit/Cost Ratio (with Green incentives)	1	0.24		0.21		0.13			0.04	
Benefit/Cost Ratio (w/o Green incentives)		0.23		0.20		0.12			0.03	
Internal Rate of Return (with Green incentives)		Negative	Negative	Negative		Negative			Negative	Negative
Internal Rate of Return (w/o Green incentives)		Negative	Negative	Negative		Negative			Negative	Negative
										
Installed Cost \$ per kW		\$ 17,377	\$ 10,338	\$ 10,052		\$ 20,036			\$ 69,333	\$ 6,605

	1							Mill Coulee Canal Drop,		
							Middle Cunningham Creek	Upper and Lower Drops		
Facility Name		Lily Pad Diversion Dam	Lovewell Dam	Mary Taylor Drop Structure	Medicine Creek Dam	Merritt Dam	Diversion Dam	Combined	Minatare Dam	Nelson Dikes C
Agency		Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation
Analysis Performed by		CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM
Project Location (State)		Colorado	Kansas	Montana	Nebraska	Nebraska	Colorado	Montana	Nebraska	Montana
Torona to the Maltered	1.17	1		00		445				100
Transmission Voltage	kV miles	115		69 3.33			115 0.31			
T-Line Length Fish and Wildlife Mitigation	miles	1.27 No	9.90 No	3.33 No	2.42 No	25.87 No	0.31 No	1.53 No	2.01 No	3.01 No
Recreation Mitigation		No	No	No	No	No	No	No	Yes	No
Historical & Archaeological		No	No	No	No	No	No	No	No	No
Water Quality Monitoring		No	No	No	No	No	No	No	No	No
Fish Passage Required		No	No	No	No	No	No	No	No	No
Results							-	· · · ·	-	
Input Data Analysis										
Data Set	years	29	19	6	56	3	29	10	15	14.0
Max Head	ft	233.5	60.3	43.7			7.1		46.1	
Min Head	ft	233.5	35.2	43.7		94.9	7.1	186.4	13.5	
Max Flow	cfs	32		541		300	98	8	426	
Min Flow	cfs	0	0	0	0	0	0	0	0	0
Turbine Selection Analysis		Site has less than 10 cfs 95% of the time; flows are too low for hydropower development	are too low for hydropower development at 30% flow	Site has seasonal flows about 5 months per year; flows are too low for hydropower development at 30% flow exceedance			of the time and head is 7.5 feet; flows and head are too low for hydropower	Site has seasonal flows about 4 months per year; flows are too low for hydropower development at 30% flow exceedance		Site has seasonal flows about 1-2 months per year; flows are too low for hydropower development at 30% flow exceedance
Selected Turbine Type					Francis	Francis			Low Head	
Selected Design Head	ft				66				35	
Selected Design Flow	cfs				58	200			2	
Generator Speed	rpm				600	600			600	
Max Head Limit	ft				82.2	141.0			44.3	
Min Head Limit	ft				42.7	73.3			23.0	
Max Flow Limit	cfs				58				2	
Min Flow Limit	cfs				12	40			0	
Power Generation Analysis										
Installed Capacity Plant Factor	kW				276 0.42				4 0.20	
Projected Monthly Production:					0.42	0.80			0.20	
January	MWH				50	1,140			0	
	MWH				60	,				
	MWH				86					
April	MWH				95				0	
May	мwн				100				1	
June	MWH				148	949			0	
July	MWH				171	149			3	
August	MWH				145	84			2	
	MWH				49	203			1	
	MWH				26				0	
November	MWH				30	599			0	
	MWH				41				0	
Annual production* * For non-leap year	мwн	1			1,001	8,438		I]	7	1]
Benefit/Cost Analysis Projected expenditure to implement project										
Total Construction Cost					\$ 2,103,644	\$ 12,641,116			\$ 757,453	
Annual O&M Cost					\$ 75,233				\$ 34,758	
Projected Total Cost over 50 year period					\$ 3,242,362	\$ 17,204,261			\$ 1,301,027	
Projected revenue after implementation of project					•	• • • • • • •				
Power generation income for 2014 to 2060 Green Energy Sellback income for 2014 to 2060	I				\$ 3,702,889				\$ 27,483	
Projected Total Revenue over 50 year period (with Green					\$ 121,163	\$ 1,021,887			\$ 877	↓
Incentives)					\$ 1,398,073	\$ 11,679,550			\$ 10,355	
Projected Total Revenue over 50 year period (w/o Green	1									
Incentives)					\$ 1,314,902				\$ 9,753	
Benefit/Cost Ratio (with Green incentives)					0.43				0.01	
Benefit/Cost Ratio (w/o Green incentives)					0.41				0.01	
Internal Rate of Return (with Green incentives)					Negative	1.2%			Negative	
Internal Rate of Return (w/o Green incentives)					Negative	0.9%			Negative	
									-	
Installed Cost \$ per kW					\$ 7,631	\$ 7,752			\$ 175,485	

Facility Name		Nelson Dikes DA Reclamation	Norton Dam	Olympus Dam Reclamation	Pactola Dam	Paradise Diversion Dam Reclamation	Pathfinder Dam Reclamation	Pishkun Dike - No. 4 Reclamation	Pueblo Dam	Rattlesnake Dam
Agency Analysis Performed by		CDM	Reclamation CDM	CDM	Reclamation CDM	CDM	CDM	CDM	Reclamation CDM	Reclamation CDM
Project Location (State)		Montana	Kansas	Colorado	South Dakota	Montana	Wyoming	Montana	Colorado	Colorado
	8						, · · · · ·			
Transmission Voltage	kV	138	115	13.8	69	115	138	69	138	3 13.8
T-Line Length	miles	3.01	0.36	0.09	0.26	1.93	2.33	8.51	0.84	0.72
Fish and Wildlife Mitigation		No	No	No	No	No	No	No	Yes	No
Recreation Mitigation		No	No	No	Yes	No	Yes	No	No	No
Historical & Archaeological Water Quality Monitoring		No No	No No	No No	No No	No No	No No	No No	No No	No No
Fish Passage Required		No	No	No	No	No	Yes	No	No	No
Results										
Input Data Analysis										
Data Set	years	14	41	11	49	15	8	13	20	31
Max Head	ft	22.2	66.1	44.0	161.7	11.8	163.9	28.9	199.4	
Min Head	ft	4.6	-	23.8	7.8	11.8	110.9	0.0	130.9	2.0
Max Flow	cfs	656	134	1,125		348	108	1,830	11,318	<u> </u>
Min Flow	cfs	U	0	14	U	0	l	0	30	1
Turbine Selection Analysis						Site has seasonal flows about 3 months per year; flows are too low for hydropower development at 30% flow exceedance				Site has 1 cfs flow consistently; flows are too low for hydropower development
Selected Turbine Type	Γ	Low Head	Low Head	Kaplan	Francis		Francis	Kaplan	Francis	· · · · · · · · · · · · · · · · · · ·
Selected Design Head	ft	17	49	42	154		135	· · · · · · · · · · · · · · · · · · ·	183	8
Selected Design Flow	cfs	46		107			76		987	
Generator Speed	rpm	600	600	600			600		300	
Max Head Limit	ft	21.5	61.8	53.0	192.9 100.3		169.2	27.3	228.3	8
Min Head Limit Max Flow Limit	π cfs	11.2	32.1	27.6 107			88.0	447	118.7 	7
Min Flow Limit	cfs	40	2	21			15		197	
Power Generation Analysis										
Installed Capacity	kW	48	6	284	596		743	610	13,027	7
Plant Factor		0.28	0.47	0.64	0.53		0.86	0.27	0.50	
Projected Monthly Production:										
	MWH	0	1	40			429		1,322	
	MWH MWH	0	1	<u> </u>			408	-	1,613 3,701	
April	MWH	2	2	100			435		6,190)
May	MWH	22	2	216			437		7,659)
June	MWH	18	3	231	329		453	251	8,555	5
July	MWH	26	3	228			497		8,113	3
August	MWH	25	2	217			481		7,051	
	MWH MWH	18	2	<u> </u>			480		4,566	
	MWH	0 0	2	68			472		2,304	
	MWH	0	2	52			487		1,154	
	мwн	116	24				5,508		55,620	
• For non-leap year Benefit/Cost Analysis Projected expenditure to implement project										
Total Construction Cost		\$ 1,479,309					\$ 4,476,400			
Annual O&M Cost		\$ 51,824					\$ 114,385			
Projected Total Cost over 50 year period		\$ 2,261,239	\$ 650,832	\$ 2,571,963	\$ 3,545,667		\$ 6,103,537	\$ 7,822,128	\$ 32,412,133	
Projected revenue after implementation of project Power generation income for 2014 to 2060		\$ 395,687					\$ 19,924,351			
Green Energy Sellback income for 2014 to 2060		\$ 14,010	\$ 2,861	\$ 187,514	\$ 329,793		\$ 666,731	\$ 169,231	\$ 6,731,308	
Projected Total Revenue over 50 year period (with Green Incentives)		\$ 149,986	\$ 33,102	\$ 2,119,176	\$ 3,807,240		\$ 7,537,539	\$ 1,818,118	\$ 75,844,766	
Projected Total Revenue over 50 year period (w/o Green		¥ 143,300	÷ 33,102	¥ 2,113,170	Ψ 3,007,240		¥ 1,001,009	¥ 1,010,110	v / 0,044,/00	<u> </u>
Incentives)		\$ 140,369					\$ 7,079,866			
Benefit/Cost Ratio (with Green incentives)		0.07		0.82			1.23		2.34	
Benefit/Cost Ratio (w/o Green incentives)	 	0.06		0.77			1.16		2.20	
Internal Rate of Return (with Green incentives) Internal Rate of Return (w/o Green incentives)		-	Negative	<u> </u>				Negative	14.0% 12.5%	
	I	Negative	Negative	1.9%	4.5%		5.6%	Negative	12.5%	2
Installed Cost \$ per kW		\$ 30,895	\$ 39,495	\$ 5,472	\$ 3,706		\$ 6,022	\$ 9,141	\$ 1,704	I]

Facility Manag		Ded Willow Dam	Coint Many Diversion Daw	Chadabill Dam	Chadau Maurtain Dam	Caldian Constan Dam	Ct. Manu Canal David	Ct. Manu Canal - Dava 0	Ct. Manu Canal Dava 2	Ct. Many Canal, David
Facility Name Agency		Red Willow Dam Reclamation	Saint Mary Diversion Dam Reclamation	Shadehill Dam Reclamation	Shadow Mountain Dam Reclamation	Soldier Canyon Dam Reclamation	St. Mary Canal - Drop 1 Reclamation	St. Mary Canal - Drop 2 Reclamation	St. Mary Canal - Drop 3 Reclamation	St. Mary Canal - Drop 4 Reclamation
Analysis Performed by		CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM
Project Location (State)		Nebraska	Montana	South Dakota	Colorado	Colorado	Montana	Montana	Montana	Montana
Transmission Voltage	kV	115		69		115				
T-Line Length	miles	1.71	8	7.32		2.46				8.58
Fish and Wildlife Mitigation		No	No	No	No	No	No	No	No	No
Recreation Mitigation Historical & Archaeological		No No	No Yes	No No	No No	No No	No Yes	No Yes	No Yes	No Yes
Water Quality Monitoring		No	No	No	NO	No	No	No	No	No
Fish Passage Required		No	No	No	No	No	No	No	No	No
Results				-						
Input Data Analysis										
Data Set	years	43	19	53	19	4	20	20	20	20
Max Head	ft	74.1	9.4	75.4		203.1	36.1	29.0		66.2
Min Head	ft	50.7	0.0	51.6		75.1		29.0		66.2
Max Flow	cfs	364	708	4,120	3,366	25	745	745	745	745
Min Flow	cfs	0	0	0	0 0	0	0	0	0	0
Turbine Selection Analysis						Site has less than 2 cfs 95% of the time ; flows and head are too low for hydropower development				
Selected Turbine Type		Low Head	Kaplan	Francis	Francis		Kaplan	Kaplan	Kaplan	Francis
Selected Design Head	ft	68		64			36			
	cfs	5	534 600	70 600			537			537 300
Generator Speed Max Head Limit	rpm ft	85.6	6.6	79.6			45.1			82.8
Min Head Limit	ft	44.5		41.4			23.5			43.0
Max Flow Limit	cfs	5	534	70			537			537
Min Flow Limit	cfs	1	107	14	9		107			107
Power Generation Analysis Installed Capacity	kW	21		322			1,212	974	887	2,569
Plant Factor		0.83	0.47	0.55	0.76		0.46	0.46	0.46	0.40
Projected Monthly Production:								1	1	
	MWH	12		104			0	0	0	0
· · · ·	MWH MWH	11		94 113			131	105	96	236
April	MWH	12		137			543			988
	MWH	13		139			894			1,650
June	мwн	14	137	155	85		879	706	643	1,625
July	MWH	14	135	156			894	718		1,654
August	MWH	14		156			876			1,620
	MWH	12		141			544		398	
October Nevember	MWH MWH	11		119			77	62	57	142
	MWH	11		112 109			0	0	0	0
	MWH	148					4,838	3,887	3,538	8,919
• For non-leap year Benefit/Cost Analysis Projected expenditure to implement project										
Total Construction Cost		\$ 780,729					\$ 7,901,765			
Annual O&M Cost	<u> </u>	\$ 52,056					\$ 218,294			
Projected Total Cost over 50 year period		\$ 1,623,656	\$ 2,820,126	\$ 5,808,529	\$ 2,325,734		\$ 11,059,281	\$ 9,973,142	\$ 9,536,333	\$ 13,860,616
Projected revenue after implementation of project Power generation income for 2014 to 2060		\$ 531,725	\$ 2,417,151	\$ 5,708,089	\$ 2,794,519		\$ 16,281,480	\$ 13,079,332	\$ 11,906,730	\$ 30,009,553
Green Energy Sellback income for 2014 to 2060		\$ 17,952			\$ 94,074		\$ 585,442			\$ 1,079,149
Projected Total Revenue over 50 year period (with Green		¢ 000 700	¢ 040.407	¢ 0.454.040	¢ 4.005.050		¢ 0.400.000	¢ 4.000.005	¢ 4.504.500	¢ (4.000.404
Incentives) Projected Total Revenue over 50 year period (w/o Green	 	\$ 202,700	\$ 918,137	\$ 2,154,242	\$ 1,065,058		\$ 6,182,903	\$ 4,966,885	\$ 4,521,589	\$ 11,396,164
Incentives)		\$ 190,377	\$ 858,313	\$ 2,026,589	\$ 1,000,481		\$ 5,781,029	\$ 4,644,049	\$ 4,227,696	\$ 10,655,387
Benefit/Cost Ratio (with Green incentives)		0.12	0.33	0.37	0.46		0.56	0.50		0.82
Benefit/Cost Ratio (w/o Green incentives)		0.12		0.35			0.52			
Internal Rate of Return (with Green incentives)		Negative		Negative	Negative			Negative	Negative	2.6%
Internal Rate of Return (w/o Green incentives)		Negative	Negative	Negative	Negative		Negative	Negative	Negative	2.2%
Installed Cost \$ per kW		\$ 37,427	\$ 10,340	\$ 12,806	\$ 12,316		\$ 6,518	\$ 7,333	\$ 7,707	\$ 3,736

	I									
Facility Name		St. Mary Canal - Drop 5	Sun River Diversion Dam	Trenton Dam	Twin Buttes Dam	Twin Lakes Dam (USBR)	Vandalia Diversion Dam	Virginia Smith Dam	Webster Dam	Whalen Diversion Dam
Agency		Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation
Analysis Performed by		CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM
Project Location (State)		Montana	Montana	Nebraska	Texas	Colorado	Montana	Nebraska	Kansas	Wyoming
	kV	69	69	138	138	115	69	11		
T-Line Length	miles	8.58	16.61	3.00	2.57	0.68	0.37	21.6		
Fish and Wildlife Mitigation		No	No	No	No	Yes	No	No	No	No
Recreation Mitigation		No	No	No	No	No	No	No	No	No
Historical & Archaeological		Yes	Yes	No	No	No	No	No	No	No
Water Quality Monitoring		No	Yes	No	No	No	No	No	No	No
Fish Passage Required		No	No	No	No	No	No	No	No	No
Results										
Input Data Analysis	1			_					-	
Data Set	years	20	13	52	18	19	7		4 17	
Max Head	ft	56.6	45.0	89.1	100.0	52.7	32.3	103.		
Min Head	ft	56.6	45.0	23.0	100.0	9.2	32.3	54.		
Max Flow	cfs	745	8,136	3,490	26,400	3,091	6,173	64	9 1,000	2,002
Min Flow	cfs	0	0	0	0	8	0	1	0 0	3
Turbine Selection Analysis										
Selected Turbine Type		Kaplan	Kaplan	Francis	Francis	Kaplan	Kaplan	Francis	Low Head	Low Head
Selected Design Head	ft	57	45	55	100	46	32	7		
Selected Design Flow	cfs	537	716	52	3,199	344	161	31		
Generator Speed	rpm	300	600	600	120	600	600	60		
Max Head Limit	ft G	70.8	56.3	69.3	125.0	57.0	40.4	89.		
Min Head Limit	ft	36.8	29.2	36.0	65.0	29.6	21.0	46.		
Max Flow Limit	cfs	537	716 143	52	3,199	344	161	31		23
Min Flow Limit	cfs	107	143	10	640	69	32	6	2 3	5
Bernen Comentien Analysis										
Power Generation Analysis	1	4 004	0.045	202	00.404	004	202	4.00	7 00	
Installed Capacity	kW	1,901	2,015	208 0.32		981	326 0.68	1,60		15
Plant Factor		0.46	0.50	0.32	0.49	0.67	0.68	0.7	1 0.29	0.40
Projected Monthly Production:	B434/11		128	40	0.000	450	177	4.07		
	MWH MWH	0	128	16 19	2,609 3,038	453 422	177	1,07		
February* March	MWH	206	140	19	3,038 8,266	422 428	236	88		
April	MWH	852	681	36	9,684	428	192	55		
May	MWH	1,402	1,556	58	11,838	550	192	81		
June	MWH	1,378	1,647	94	12,810	735	210	1,00		
July	MWH	1,402	1,650	128	15,989	807	99	1,00		
August	MWH	1,373	1,361	113	13,093	634	89	94		
	MWH	853	699	56	7,747	348	102	38		11
	MWH	121	191	10	5,540	270	140	53		3
	MWH	0	197	9	2,707	293	139	80		0
December	мwн	0	211	9	4,134	331	153	1,04		0
Annual production*	MWH	7,586	8,645	570	97,457	5,648	1,907	9,79		53
• For non-leap year Benefit/Cost Analysis Projected expenditure to implement project										
Total Construction Cost Annual O&M Cost	I	\$ 9,154,535								
	<u> </u>	\$ 263,986				\$ 136,168		299,242		
Projected Total Cost over 50 year period	I	\$ 13,005,664	\$ 17,130,524	\$ 3,287,293	\$ 51,917,003	\$ 6,222,276	\$ 2,887,615	5 15,744,210	3,788,753	\$ 1,062,194
Projected revenue after implementation of project Power generation income for 2014 to 2060		\$ 25,527,189						36,574,151		
Green Energy Sellback income for 2014 to 2060		\$ 917,895	\$ 1,046,115	\$ 69,019	\$ 11,794,649	\$ 683,695	\$ 230,861	5 1,186,150	0 \$ 19,915	\$ 6,382
Projected Total Revenue over 50 year period (with Green	I									
Incentives) Projected Total Revenue over 50 year period (w/o Green	I	\$ 9,693,967	\$ 11,059,141	\$ 800,826	\$ 135,691,137	\$ 7,745,080	\$ 2,519,621	5 13,795,960) \$ 231,563	\$ 72,476
Incentives)		\$ 9,063,882	\$ 10,341,041	\$ 753,448	\$ 127,594,769	\$ 7,275,762	\$ 2,361,148	12,981,735	5 \$ 217,892	\$ 68,095
Benefit/Cost Ratio (with Green incentives)		\$ <u>3,003,082</u> 0.75	0.65	0.24		1.24	÷ 2,301,148 . 0.87	0.8		
Benefit/Cost Ratio (w/o Green incentives)		0.70	0.60	0.24	2.81	1.24	0.87	0.8		
Internal Rate of Return (with Green incentives)		1.8%		0.23 Negative	2.40	6.5%	3.0%		2 0.00 % Negative	Negative
Internal Rate of Return (w/o Green incentives)		1.6%		Negative	14.2%	5.8%	2.5%		% Negative	Negative
, ,		1.470	0.478		.4.2 /0	5.076	2.370	2.07		
Installed Cost \$ per kW		\$ 4,817	\$ 6,259	\$ 10,461	\$ 1,455	\$ 4,274	\$ 5,461	5 7,137	40,704	\$ 35,641

Facility Name		Bartlett Dam	Gila Gravity Main Canal Headworks	Horseshoe Dam	Imperial Dam	Laguna Dam
· · · · · · · · · · · · · · · · · · ·						
Agency		Reclamation	Reclamation	Reclamation	Reclamation	Reclamation
Analysis Performed by		CDM	CDM	CDM	CDM	CDM
Project Location (State)		Arizona	Arizona	Arizona	Arizona	Arizona
Transmission Voltage	kV 	115		115	69	
T-Line Length Fish and Wildlife Mitigation	miles	0.06 Yes	0.95 No	6.79 Yes	0.50 Yes	0.4 No
Recreation Mitigation		Yes	No	Yes	No	No
Historical & Archaeological		No	No	No	No	Yes
Water Quality Monitoring		No	No	No	No	No
Fish Passage Required		No	No	No	No	No
Results						
Input Data Analysis		1 40			4	
Data Set Max Head	years ft	10 251.0	14	4 142.0	4 11.5	10.
Min Head	ft	251.0		142.0	11.5	
Max Flow	cfs	25,100	2,160	1,350	1,500	
Min Flow	cfs	54	0	0	0	
Turbine Selection Analysis	r – –	Engrada	Kerler	Frencia	Karler	Kenlan
Selected Turbine Type Selected Design Head	ft	Francis 251	Kaplan 3	Francis 142	Kaplan 12	Kaplan 1
Selected Design Head Selected Design flow	ft cfs	251	•	142	12	20
Generator Speed	rpm	600	600	240	600	60
Max Head Limit	ft	313.8	3.2	177.5	14.4	12.
Min Head Limit	ft	163.1	1.6	92.3	7.5	
Max Flow Limit Min Flow Limit	cfs cfs	415	1,410 282	1,350 270	1,500 	20
	015	83	282	270	300	4
Power Generation Analysis						
Installed Capacity	kW	7,529	223	13,857	1,079	12
Plant Factor		0.57	0.81	0.50	0.57	0.5
Projected Monthly Production:		•	8	<u>.</u>		
January	MWH	2,984	77	0	0	
February*	MWH	3,494	87	0	0	
March	MWH	3,002		0	0	
April May	MWH MWH	3,238	153 161	9,728 9,977	865	5
June	MWH	3,025	165	9,977	888	10
July	MWH	2,781	162	9,977	888	
August	MWH	2,364	150	,	888	10
September	MWH	1,742	153	9,977	888	
October November	MWH MWH	3,790 3,976	132 104	241	21 0	
December	MWH	3,581	70	0	0	
Annual production*	MWH	36,880	1,548	59,854	5,325	
* For non-leap year Benefit/Cost Analysis Projected expenditure to implement proje Total Construction Cost Annual O&M Cost	ct	\$ 15,119,971 \$ 435,183		\$ 30,122,959 \$ 792,451		
		ψ 400,100	ψ 00,907	ψ 152,431	ψ 147,330	Ψ 40,900
Projected Total Cost over 50 year period		\$ 21,466,246	\$ 2,712,614	\$ 41,468,135	\$ 6,806,855	\$ 1,862,03
Projected revenue after implementation o	f project					
Power generation income for 2014 to	,					
2060		\$ 135,502,787	\$ 5,722,519	\$ 224,545,969	\$ 19,978,589	\$ 2,142,55
Green Energy Sellback income for 2014						
to 2060 Projected Total Revenue over 50 year		\$ 46,320,673 \$ 75,081,401		\$ 75,116,372 \$ 122,548,050		
period (with Green Incentives) Projected Total Revenue over 50 year period (w/o Green Incentives)		\$ 75,081,491 \$ 48,254,174		\$ 123,548,060 \$ 80,041,690		
Benefit/Cost Ratio (with Green incentives)	İ	3.50			1.61	¢ 703,34 0.6
Benefit/Cost Ratio (w/o Green incentives)		2.25		1.93	1.05	
Internal Rate of Return (with Green incentives)		22.9%	6.4%	19.3%	10.3%	Negative
Internal Rate of Return (w/o Green incentives)		12.5%		10.5%		Negative
Installed Cost \$ per kW		\$ 2,008	\$ 7,632	\$ 2,174	\$ 4,280	\$ 8,794

Table E-5 Mid-Pacific Region Model Results

	1						O ante an Dama		
Facility Name		Anderson Rose Dam	Boca Dam	Bradbury Dam	Casitas Dam	Clear Lake Dam	Gerber Dam	John Franchi Dam	LakeTahoe Dam
Agency Analysis Performed by		Reclamation CDM	Reclamation CDM	Reclamation CDM	Reclamation CDM	Reclamation CDM	Reclamation CDM	Reclamation CDM	Reclamation CDM
Project Location (State)		Oregon	Colifornia	Colifornia	Colifornia	California	Oregon	California	Colifornia
		Oregon	California	California	GainOrnia	Camornia	Oregon	California	California
Transmission Voltage	kV	115	69	115	69	138	138	138	3 115
T-Line Length	miles	0.24	1.14	7.18	0.27	11.90	11.30	3.03	3 0.05
Fish and Wildlife Mitigation		No	No	No	No	No	No	Yes	Yes
Recreation Mitigation		No	Yes	No	No	Yes	No	No	Yes
Historical & Archaeological		No	Yes	No	No	No	No	No	No
Water Quality Monitoring		No	No	No	No	No	No	No	No
Fish Passage Required		No	No	No	No	Νο	No	No	Yes
Results Input Data Analysis									
Data Set	years	23	30	29	30		11		30
Max Head	ft	12.0	102.0	190.0	216.6	6.7	48.0		
Min Head	ft	12.0	37.0	190.0	37.0	0.0	16.6	15.0	
Max Flow Min Flow	cfs cfs	1,086	2,530	10 10	2,530	540	<u> </u>		3,160
	013	<u> </u>							
						No head available for			
Turbine Selection Analysis		1	-	D-//	Fac. 1	hydropower development	Kaul		
Selected Turbine Type		Low Head	Francis	Pelton	Francis		Kaplan	Kaplan	Kaplan
Selected Design Head	TT of o	12	92		96	├ ─── ├	35		
Selected Design flow Generator Speed	cfs	40 600	179 600	10 600	151 600	<u>↓ </u>	112 600		
Max Head Limit	rpm	15.0	114.4	209.0	119.4		44.2		
Max Head Limit Min Head Limit	1L #4	7.8	59.5	123.5	62.1		23.0		
Max Flow Limit	cfs	40		123:3	151		23.0		
Min Flow Limit	cfs		36	- •	30		22		
	010	3						100	
Power Generation Analysis									
Installed Capacity	kW	29	1,184	142	1,042		248	469	287
Plant Factor		0.50	0.43	0.43	0.37		0.36		
Projected Monthly Production:		•				•		•	-
January	MWH	17	191	29	144		0		17
February*	MWH	15	195	40	138		0	(29
March	MWH	9	276		199		0		59
April	MWH	9	493	61	366		11		108
Мау	MWH	12	611	65	451		122		
June	MWH	6	519	62	377		173	384	
July	MWH	6	469	60	361		191		
August	MWH	4	376	50	278	8 8	162		
September	MWH	11	412				99		
October	MWH	12	372		291	I	2	12	
November	MWH	9	262				0		25
December	MWH	15	196				0	(17
Annual production* * For non-leap year	MWH	126	4,370	521	3,280	<u> </u>	760	1,863	893
<i>Benefit/Cost Analysis</i> Projected expenditure to implement project									
Total Construction Cost		\$ 377,653	\$ 4,393,028	\$ 3,093,843		\$	5,358,017	\$ 3,624,493	\$ 2,494,825
Annual O&M Cost	<u> </u>	\$ 29,788				\$	135,702		
Projected Total Cost over 50 year period		\$ 865,633	\$ 6,549,305	\$ 4,356,615	\$ 5,247,277	\$	7,284,535	\$ 5,241,266	\$ 3,475,846
Projected revenue after implementation of project									
Power generation income for 2014 to 2060		\$ 481,278		\$ 1,966,739		\$	2,646,350		
Green Energy Sellback income for 2014 to 2060		\$ 15,313	\$ 9,033,922	\$ 1,076,517	\$ 6,780,039	\$	91,906	\$ 3,849,722	\$ 1,845,091
Projected Total Revenue over 50 year period (with Green Incentives)		\$ 181,371	\$ 10,979,640	\$ 1,308,649	\$ 8,246,189	\$	1,004,697	\$ 4,692,721	\$ 2,244,889
Projected Total Revenue over 50 year period (w/o Green									
Incentives)		\$ 170,859	\$ 5,850,797		\$ 4,396,942	\$	941,609	\$ 2,507,074	
Benefit/Cost Ratio (with Green incentives)		0.21	1.68	0.30	1.57		0.14	0.90	0.65
Benefit/Cost Ratio (w/o Green incentives)		0.20	0.89	0.16	0.84		0.13		3 0.34
Internal Rate of Return (with Green incentives)		Negative	11.3%	Negative	10.7%	Ne	egative		Negative
Internal Rate of Return (w/o Green incentives)		Negative	3.4%	Negative	2.8%	Ne	gative	Negative	Negative
								•	-
nstalled Cost \$ per kW	1	\$ 12,916	\$ 3,711	\$ 21,749	\$ 3,165	\$	21,621	\$ 7,728	\$ 8,68

Table E-5 Mid-Pacific Region Model Results

Facility Name	Г	Malone Diversion Dam	Marble Bluff Dam	Prosser Creek Dam	Putah Creek Dam	Putah Diversion Dam	Rainbow Dam	Twitchell Dam	Upper Slaven Dam
gency		Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation
Analysis Performed by		CDM	CDM	CDM	CDM	CDM	CDM	Reclamation	CDM
Project Location (State)		Oregon	Nevada	California	California	California	California		Nevada
	1	0.030							
Transmission Voltage	kV	115	115	69	138	115	115		11
T-Line Length	miles	4.60	7.22	0.50	1.94	2.23			7.2
Fish and Wildlife Mitigation		No	No	No	No	Yes	No		No
Recreation Mitigation		No	Yes	Yes	No	No	Yes		No
Historical & Archaeological		No	No	No	No	No	No		No
Water Quality Monitoring		No	No	No	No	No	No		No
Fish Passage Required		No	Νο	No	No	No	No		No
Results Input Data Analysis									
Data Set	years	5	30	30	34	33	2		1
Max Head	ft	8.5	49.0	132.0	11.3	11.3			8.0
Min Head	ft	0.0	37.5	73.3	0.0				8.0
Max Flow	cfs	150	19,300	1,810	14,557	14,569			8,32
Min Flow	cfs	0	3	0	5	1			
Turbine Selection Analysis								Site has inconsistent flows 2- 3 months in some years, model estimated that flows are too low for hydropower development at 30% flow exceedance	
Selected Turbine Type		Low Head	Kaplan	Francis	Low Head	Kaplan	Kaplan		Kaplan
Selected Design Head	ft	8	38	127	11				
Selected Design flow	cfs	95	479	95	43				310
Generator Speed	rpm	600	600	600	600	600	600		600
Max Head Limit	ft	9.6	48.1	158.8	13.1	13.1	36.3		10.0
Min Head Limit	ft	5.0	25.0	82.5	6.8	6.8			5.2
Max Flow Limit	cfs	95	479	95	43	553	105		310
Min Flow Limit	cfs	19	96	19	9	111	21		63
		-							
Power Generation Analysis	1			0.70				1	
Installed Capacity	kW	44 0.39	1,153	872	28 0.70				158
Plant Factor		0.39	0.57	0.51	0.70	0.62	0.63		0.53
Projected Monthly Production:	N 434711		470	202	40				
January February	MWH	0	470	222	12 10				40
February* March	MWH MWH	0	403 523	257 424	10	<u>63</u> 110			60
April	MWH	0	692	424 493	14	208			112
May	MWH	24	751	493 462	18				112
June	MWH	24	585	389	18	207			11:
July	MWH	29	412	309	19				60
August	MWH	31	301	307	19				10
September	MWH		0.47	375					
October	MWH	26	347	281	10 10				12
November	MWH	0	303	118					23
December	MWH	0	375	172					34
Annual production*	MWH	147	5,624	3,819					72
* For non-leap year Benefit/Cost Analysis Projected expenditure to implement project Total Construction Cost		\$ 1,835,590	\$ 6.854.227	\$ 3,118,982	\$ 1,047,689	\$ 2,815,269	\$ 5.915.882		\$ 3,473,962
Annual O&M Cost		\$ 57,904	\$ 193,917	\$ 113,524	\$ 42,467	\$ 90,574	\$ 142,097		\$ 95,615
Projected Total Cost over 50 year period		\$ 2,694,374	\$ 9,672,589	\$ 4,841,769	\$ 1,701,850	\$ 4,163,135	\$ 7,908,290		\$ 4,855,939
Projected revenue after implementation of project									
Power generation income for 2014 to 2060		\$ 516,966	\$ 21,302,210	\$ 14,440,943	\$ 632,485	\$ 7,249,612	\$ 3,737,394		\$ 2,687,577
Green Energy Sellback income for 2014 to 2060		\$ 17,748	\$ 680,771	\$ 7,896,125	\$ 343,943	\$ 3,976,637	\$ 2,063,485		\$ 87,112
Projected Total Revenue over 50 year period (with Green Incentives)		\$ 196,038	\$ 8,014,671	\$ 9,604,843	\$ 419,557	\$ 4,828,813	\$ 2,496,900		\$ 1,012,476
Projected Total Revenue over 50 year period (w/o Green Incentives)		\$ 183,854			\$ 224,291				\$ 952,679
Benefit/Cost Ratio (with Green incentives)		0.07	0.83	1.98		1.16			0.2
Benefit/Cost Ratio (w/o Green incentives)		0.07	0.78	1.06		0.62			0.2
Internal Rate of Return (with Green incentives)		Negative	2.8%	14.2%	Negative	6.3%	Negative		Negative
Internal Rate of Return (w/o Green incentives)		Negative	2.4%	4.9%	Negative	0.2%	Negative		Negative
nstalled Cost \$ per kW		\$ 41,464	\$ 5,943	\$ 3,576	\$ 38,062	\$ 7,745	\$ 31,116		\$ 21,97

Facility Name		Agate Dam	Agency Valley	Arthur R. Bowman Dam	Bully Creek Dam	Bumping Lake	Cle Elum Dam	Cold Springs Dam	Crane Prairie Dam	Deadwood Dam
Agency		Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation
Analysis Performed by		CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM
Project Location (State)		Oregon	Oregon	Oregon	Oregon	Washington	Washington	Oregon	Oregon	Idaho
-	kV	115	138	138			11			
0	miles	0.75	22.46	5.94		22.78	2.03			45.01
Fish and Wildlife Mitigation		No	No	No	No	Yes	No	Yes	No	No
Recreation Mitigation		No	No	Yes	No	Yes	No	No	No	No
Historical & Archaeological		No	No	No	No	No	No	No	No	No
Water Quality Monitoring		No	No	No	No	No	No	No	No	No
Fish Passage Required		No	No	No	No	No	No	No	No	No
Results Input Data Analysis										
									-1	
Data Set	years	10	35 79.8	29 190.1	24 95.5		3 [.] 128.			28 127.3
Max Head	TT	65.0 26.4	79.8	190.1	35.7	38.1 2.9	128.3			72.4
Min Head Max Flow	π cfs	26.4	2.2	3,280						
Max Flow Min Flow	cfs	1,940	2,060	3,280	3,463	2,480	5,11	1 300 n	0 822 0 21	2,22
Turbine Selection Analysis						K. I.				
Selected Turbine Type	£4.	Low Head	Francis	Francis	Francis	Kaplan	Francis	Low Head	Kaplan	Francis
Selected Design Head	rt ofo	63	67	173	8		10			110
Selected Design flow Generator Speed	cfs rpm	23 600	244 600	264	8	-	994			8
Max Head Limit	fpill ft	78.2	83.6	215.7	106.1	37.3	126.			136.9
Min Head Limit	ft	40.7	43.5	112.2	55.2		65.0			71.2
Max Flow Limit	cfs	40.7	244	264			99			110
Min Flow Limit	cfs	5	49	53		56	19		6 54	
Power Generation Analysis	0.0				·					
Installed Capacity	kW	89	1,179	3,293	313	521	7,24	9 60	6 306	
Plant Factor		0.35	0.39	0.65	0.40	0.49	0.24	4 0.23	3 0.70	0.48
Projected Monthly Production:										
	MWH	2	30	875			47			
	MWH	6	70	1,092			40			
March	MWH	25	221	1,393		76	58		110	199
April	MWH	43	605	1,989			1,29			212
May	MWH	47	848	2,250		372	2,33		5 218	285
June July	MWH MWH	47	814 665	2,233			2,46	7	8 220 5 208	57 ⁴ 657
August	MWH	30	426	2,130	126		2,07		D 191	
September	MWH	30	420	1,718		145	2,07		D 164	
•	MWH	3	52	1,126		143	6		129	
	MWH			611		40	23		D 118	
	MWH	3	0	796		82	71		120	
	MWH	264	3,941	18,282			14,91			
* For non-leap year Benefit/Cost Analysis Projected expenditure to implement project Total Construction Cost		\$ 821,490	\$ 11,353,273	\$ 8,994,918	\$ 8,062,850	\$ 11,275,688	\$ 13,692,270	\$ 1,308,787	\$ 7,751,258	\$ 19,510,113
Annual O&M Cost		\$ 41,759				\$ 253,877				
Projected Total Cost over 50 year period		\$ 1,481,772								
Projected revenue after implementation of project Power generation income for 2014 to 2060		\$ 920,311					\$ 52,583,732			
Green Energy Sellback income for 2014 to 2060		\$ 32,002					\$ 1,804,591			
Projected Total Revenue over 50 year period (with Green ncentives)		\$ 349,661	\$ 5,123,348				\$ 19,946,301			
Projected Total Revenue over 50 year period (w/o Green ncentives)		\$ 327,694								
Benefit/Cost Ratio (with Green incentives)		0.24	0.33	1.90			0.9			
Benefit/Cost Ratio (w/o Green incentives)		0.22	0.31	1.79			0.8			
Internal Rate of Return (with Green incentives)			Negative		Negative	Negative	3.8%	6 Negative	Negative	Negative
Internal Rate of Return (w/o Green incentives)		Negative	Negative	10.0%	Negative	Negative	3.3%	Negative	Negative	Negative

Fish and Wildlife Mitigation Recreation Mitigation Recreation Mitigation Historical & Archaeological Water Quality Monitoring Fish Passage Required Fish Passage Required Results Input Data Analysis Junt Data Analysis Data Set yet Max Head ft Min Head ft Min Flow cf Min Flow cf Selected Turbine Type Selected Turbine Type	v niles ears t t fs	Easton Diversion Dam Reclamation CDM Washington 138 0.32 No No No No No No 10 49.2 31.6 5,308 132	Emigrant Dam Reclamation CDM Oregon 138 0.22 No No No No No No No 14 194.5 103.0 1,139 0	Fish Lake Reclamation CDM Oregon 115 1.50 Yes No No No No No So Oregon	5.00 No No No No 2		Harper Dam Reclamation CDM Oregon 115 13.50 No No	Haystack Canal Reclamation CDM Oregon 138 2.49 No No No No No No No 7 62.7 42.3 382 1		Kachess Dam Reclamation CDM Washington 13: 0.1: No No No No No No 2: CDM COM No No No No 2: CDM COM No No No No No No No No No No No No No
Analysis Performed by Project Location (State) Transmission Voltage kN T-Line Length m Fish and Wildlife Mitigation m Recreation Mitigation m Historical & Archaeological m Water Quality Monitoring m Fish Passage Required m Results m Input Data Analysis m Data Set yet Max Head ft Min Head ft Min Flow cf Turbine Selection Analysis cf Selected Turbine Type p	niles rears t t	CDM Washington 138 0.32 No No No No No No No No No 10 49.2 31.6 5,308	CDM Oregon 138 0.22 No No No No No 14 194.5 103.0	CDM Oregon 115 1.50 Yes No No No No 5 42.4 21.2	CDM Idaho 115 5.00 No No No No No No 2	CDM	CDM Oregon 115 13.50 No No No No No 4 80.0 80.0	CDM Oregon 138 2.49 No No No No No 7 62.7 42.3		CDM Washington 133 0.13 0.13 0.13 0.13 No No No No No 22 67.3 67.4 4.4
Project Location (State) Transmission Voltage kN T-Line Length m Fish and Wildlife Mitigation m Recreation Mitigation m Historical & Archaeological m Water Quality Monitoring m Fish Passage Required m Results m Input Data Analysis m Data Set yet Max Head ft Min Head ft Min Flow cf Turbine Selection Analysis cf Selected Turbine Type m	niles rears t t	Washington 138 0.32 0.32 No 0.000 10 49.2 31.6 5,308	Oregon 138 0.22 No No No No 14 194.5 103.0	Oregon 115 1.50 Yes No No No So 42.4 21.2	Idaho 115 5.00 No No No No No 2 2		Oregon 115 13.50 No No No No 4 80.0 80.0	Oregon 138 2.49 No No No No 7 62.7 42.3		Washington 13 0.1 No A. 4.
Transmission Voltage kV T-Line Length m Fish and Wildlife Mitigation m Fish and Wildlife Mitigation m Recreation Mitigation m Historical & Archaeological m Water Quality Monitoring m Fish Passage Required m Results m Input Data Analysis m Data Set yet Max Head ft Min Head ft Min Flow cf Min Flow cf Selected Turbine Type m	niles rears t t	138 0.32 No No No No No 10 49.2 31.6 5,308	138 0.22 No No No No No 14 194.5 103.0	115 1.50 Yes No No No 5 42.4 21.2	115 5.00 No No No No 2		115 13.50 No No No No No 4 80.0 80.0	138 2.49 No No No No 7 62.7 42.3		13 0.1 No No No No 2 2 67. 4.
T-Line Length m Fish and Wildlife Mitigation Recreation Mitigation Historical & Archaeological Water Quality Monitoring Fish Passage Required Results Input Data Analysis Data Set yet Max Head ft Min Head ft Max Flow cf Min Flow cf	niles rears t t	0.32 No No No No 10 49.2 31.6 5,308	0.22 No No No No 14 194.5 103.0	1.50 Yes No No No 5 42.4 21.2	5.00 No No No No 2		13.50 No No No No 4 80.0 80.0	2.49 No No No No 7 62.7 42.3		0.1: No No No No No 2: 67.: 4.
T-Line Length m Fish and Wildlife Mitigation m Recreation Mitigation m Historical & Archaeological m Water Quality Monitoring m Fish Passage Required m Results m Input Data Analysis m Data Set yet Max Head ft Min Head ft Min Flow cf Turbine Selection Analysis s Selected Turbine Type m	ears t t	No No No No No 10 49.2 31.6 5,308	No No No No 14 194.5 103.0	Yes No No No 5 42.4 21.2	No No No No No No 2		No No No No 4 80.0 80.0	No No No No 7 62.7 42.3		No No No No 22 67.4
Recreation Mitigation Instorical & Archaeological Historical & Archaeological Instoring Water Quality Monitoring Instruction Fish Passage Required Instruction Results Input Data Analysis Data Set yet Max Head ft Min Head ft Min Flow cf Min Flow cf Selected Turbine Type Selected Turbine Type	t t :fs	No No No 10 49.2 31.6 5,308	No No No 14 194.5 103.0	No No No 5 42.4 21.2	No No No 2		No No No 4 80.0 80.0	No No No 7 62.7 42.3		No No No No 22 67.4
Historical & Archaeological Water Quality Monitoring Fish Passage Required Results Input Data Analysis Data Set ye Max Head ft Min Head ft Max Flow cf Min Flow cf Min Flow cf Selection Analysis	t t :fs	No No No 10 49.2 31.6 5,308	No No No 14 194.5 103.0	No No No 5 42.4 21.2	No No No 2		No No No 4 80.0 80.0	No No No 7 62.7 42.3		No No No 22 67.4
Water Quality Monitoring Fish Passage Required Results Input Data Analysis Data Set yet Max Head ft Min Head ft Min Flow cf Min Flow cf Selected Turbine Type Selected Turbine Type	t t :fs	No No 10 49.2 31.6 5,308	No No 14 194.5 103.0	No No 5 42.4 21.2	No No 2		No No 4 80.0 80.0	No No 7 62.7 42.3		No No 22 67. 4.
Fish Passage Required Results Input Data Analysis Data Set ye Max Head ft Min Head ft Max Flow cf Min Flow cf Min Flow cf Selected Turbine Type Selected Turbine Type	t t :fs	No 10 49.2 31.6 5,308	No 14 194.5 103.0	No 5 42.4 21.2	No 2		No 4 80.0 80.0	No 7 62.7 42.3		No 2: 67. 4.
Results Input Data Analysis Data Set ye Max Head ft Min Head ft Max Flow cf Min Flow cf Turbine Selection Analysis Selected Turbine Type	t t :fs	10 49.2 31.6 5,308	14 194.5 103.0	5 42.4 21.2	2		4 80.0 80.0	7 62.7 42.3		2: 67. 4.
Input Data Analysis Data Set ye Max Head ft Min Head ft Max Flow cf Min Flow cf Min Flow cf Selected Turbine Type Selected Turbine Type	t t :fs	49.2 31.6 5,308	194.5 103.0	21.2	2		80.0	42.3		67.: 4.
Data Set ye Max Head ft Min Head ft Max Flow cf Min Flow cf <i>Turbine Selection Analysis</i> Selected Turbine Type	t t :fs	49.2 31.6 5,308	194.5 103.0	21.2	2		80.0	42.3		67.: 4.
Max Head ft Min Head ft Max Flow cf Min Flow cf <i>Turbine Selection Analysis</i> Selected Turbine Type	t t :fs	49.2 31.6 5,308	103.0	21.2			80.0	42.3		67.: 4.
Min Head ft Max Flow cf Min Flow cf Turbine Selection Analysis selected Turbine Type		31.6 5,308	103.0							4.0
Min Flow cf <i>Turbine Selection Analysis</i> Selected Turbine Type			1,139 0	369 0			75 0	<u>382</u> 1		2 A0
<i>Turbine Selection Analysis</i> Selected Turbine Type	fs	132	0	0			0	1		2,00
Selected Turbine Type										
						Site has seasonal flow for 3 months in some years;flows are too low for hydropower development at 30% flow exceedance			Site has flows less than 5 cfs 95% of the time; flows and head are too low for hydropower development	
		Kaplan	Francis	Francis	Kaplan		Francis	Kaplan		Kaplan
Selected Design Head ft	t T	46	185	39	43		80	57		5
-	fs	366	55	36	191 600		75	225		35
	pm	600 57.7	600 231.0	600 48.3	600 53.8		600 100.0	600 71.5		60 68.
Max Head Limit ft Min Head Limit ft		30.0	120.1	48.3	27.9		52.0	37.2		35.0
	fs	366	55	36	191		75	225		35
	fs	73	11	7	38		15	45		7
	W	1,057	733				434	805		1,22
Plant Factor Projected Monthly Production:		0.82	0.42	0.27	0.52		0.50	0.54		0.3
	иwн	506	144	15	0		0	0		1
	/WH	451	144	13	0		0	0		52
	IWH	537	189	14	0		3	0		93
April M	/WH	757	285	11	0		312	418		193
	IWH	733	196	14			312	617		56
	IWH	738	278	14	378		312	589		85
-	IWH	786	498	37	423		312	594		79
	/WH /WH	801 560	438	44 	423		312 310	593 609		66
	/WH	538	261	42			310	319		11
	лwн	500	23				0	010		1
	IWH	491	130		0		0	0		3:
	1WH	7,400	2,619	235	2,293		1,874	3,738		3,87
* For non-leap year Benefit/Cost Analysis Projected expenditure to implement project Total Construction Cost		\$ 4,006,938 \$	2,209,654	\$ 1,175,986	\$ 3,991,565		\$ 5,901,187	\$ 3,916,382		\$ 4,335,923
Annual O&M Cost		\$ 143,036 \$					\$ 152,352	\$ 131,443		\$ 154,639
Projected Total Cost over 50 year period		\$ 6,171,299 \$					\$ 8,073,375			\$ 6,675,542
Projected revenue after implementation of project Power generation income for 2014 to 2060 Green Energy Sellback income for 2014 to 2060		\$ 27,455,501 \$ \$ 895,742 \$	9,666,178 317,055				\$ 6,583,707 \$ 226,697	\$ 13,258,988 \$ 452,334		\$ 13,579,772 \$ 469,133
Projected Total Revenue over 50 year period (with Green		ψ 090,/42 \$	317,000	ψ 20,431	Ψ 211,478		Ψ 220,097	Ψ 452,334		φ 409,133
Incentives)		\$ 10,368,025 \$	3,649,488	\$ 336,659	\$ 3,234,683		\$ 2,497,941	\$ 5,027,304		\$ 5,154,194
Projected Total Revenue over 50 year period (w/o Green										
Incentives)		\$ 9,753,149 \$	3,431,848				\$ 2,342,327	\$ 4,716,802		\$ 4,832,160
Benefit/Cost Ratio (with Green incentives) Benefit/Cost Ratio (w/o Green incentives)		1.68	0.99				0.31	0.85		0.7
Internal Rate of Return (with Green incentives)		1.58 9.9%	0.93	0.17	0.53		0.29	0.80		0.7
Internal Rate of Return (with Green incentives)		9.9%			Negative Negative		Negative Negative	2.9%		1.5%
		0.0 %	3.1%				noganito	2.4%		1.57
Installed Cost \$ per kW		\$ 3,792 \$	3,013	\$ 11,555	\$ 7,771		\$ 13,606	\$ 4,866		\$ 3,53

Facility Name	1	Keechelus Dam	Little Wood River Dam	Lytle Creek Diversion Dam	Mann Creek	Mason Dam	Maxwell Dam	McKay Dam	Ochoco Dam	Reservoir "A"
Agency		Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation
Analysis Performed by		CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM
Project Location (State)		Washington	Idaho	Oregon	Idaho	Oregon	Oregon	Oregon	Oregon	Idaho
		ů č		Č Č		U U	° .	<u></u>		
Transmission Voltage	kV	138	138	138	138	115	115	13	8 138	138
T-Line Length	miles	1.07	37.37	3.22	4.59	10.82	3.99	2.2	2 2.22	2.29
Fish and Wildlife Mitigation		No	No	No	No	No	No	No	No	No
Recreation Mitigation		Yes	No	No	No	No	No	No	No	No
Historical & Archaeological		No	No	No	No	No	No	No	No	Yes
Water Quality Monitoring Fish Passage Required		No No	No No	No No	No No	No No	No	No No	No No	No No
Results		110	NO	NO	No	No	110	NO	NO	NO
Input Data Analysis										
Data Set	years	29	24	29	2	37	20	1	6 26	6
Max Head	ft	92.9	119.1	3.0		156.6	4.0	137.		
Min Head	ft	5.8	12.9	3.0		71.1	4.0	43.4		
Max Flow	cfs	2,370	2,126	3,280		592	14,500	1,40	0 565	
Min Flow	cfs	0	0	7		0	1		0 0	0
<i>Turbine Selection Analysis</i> Selected Turbine Type		Francis	Francis	Kaplan	Insufficient data (< 3 years); Low Confidence Results Francis	Francis	Kaplan	Francis	Low Head	Low Head
Selected Design Head	ft	75	103		113	139	4	12		
·	cfs	444	200			164	467	15		
	rpm 44	600 93.3	600	600 3.8		600 173.4	600 5.0	60 152.		
Max Head Limit Min Head Limit	π #	93.3 48.5	129.1 67.1	3.8		90.2	2.6			
	cfs	48.5	200	264		90.2 164	467	15		
	cfs	89	40	53		33	93	3		2
Power Generation Analysis	.									
-	kW	2,394	1,493	50	495	1,649	117	1,36	2 69	45
Plant Factor		0.33	0.39	0.77	0.50	0.41	0.64	0.3	7 0.39	0.44
Projected Monthly Production:										
	MWH	205	84			39	80	3		
	MWH	213	139			72	76	6		
	MWH MWH	229 740	245 558	25		285 588	90 88	14 47		
	MWH	1,383	1,042	33	355	500 1,102	00 74	47		
	MWH	1,561	1,119	38		1,102	45			30
	MWH	1,273	935	37		1,101	6	92		
August	MWH	774	501	37	266	993	3	75	9 30	31
September	MWH	156	195	33	87	463	17	48	5 21	25
	MWH	9	32			4	43	19		14
	MWH	18	46			0	56	2	0 5	1
	MWH	185	55			0	66		9	0
· · · · ·	MWH	6,746	4,951	329	2,097	5,773	644	4,34	4 232	169
* For non-leap year Benefit/Cost Analysis Projected expenditure to implement project Total Construction Cost		\$ 6,774,178	\$ 17,931,211	\$ 1,603,210	\$ 3,554,446	\$ 7,276,420	\$ 2,075,386	\$ 4,273,973	s 1,286,281	\$ 1,262,170
Annual O&M Cost		\$ 223,994						\$ 155,651		
Projected Total Cost over 50 year period		\$ 10,122,860					\$ 3,072,049	\$ 6,636,265	5 \$ 2,043,020	
Projected revenue after implementation of project Power generation income for 2014 to 2060		\$ 23,024,064			\$ 7,713,968	\$ 20,039,378	\$ 2,408,361	\$ 15,476,231		
Green Energy Sellback income for 2014 to 2060		\$ 816,443				\$ 698,532	\$ 77,974	\$ 525,715		
Projected Total Revenue over 50 year period (with Green Incentives)		\$ 8,765,705	\$ 6,842,890	\$ 456,105	\$ 2,906,180	\$ 7,613,801	\$ 909,338	\$ 5,863,393	\$ \$ 320,425	\$ 238,540
Projected Total Revenue over 50 year period (w/o Green Incentives)		\$ 8,205,262	\$ 6,431,553				\$ 855,813	\$ 5,502,518		
Benefit/Cost Ratio (with Green incentives)		0.87	0.29	0.19	0.56	0.72	0.30	0.8		
Benefit/Cost Ratio (w/o Green incentives)		0.81	0.27	0.18		0.68	0.28	0.8		
Internal Rate of Return (with Green incentives) Internal Rate of Return (w/o Green incentives)				Negative	Negative	1.5%	Negative	3.2%	/ Negative	Negative
internal Nate of Neturn (w/o Green Incentives)	l	2.5%	Negative	Negative	Negative	1.1%	Negative	2.7%	% Negative	Negative
Installed Cost \$ per kW		\$ 2,830	\$ 12,013	\$ 32,368	\$ 7,174	\$ 4,414	\$ 17,766	\$ 3,138	\$ 18,532	\$ 27,968

Facility Name	1	Ririe Dam	Scoggins Dam	Scootney Wasteway	Soda Creek	Soldier's Meadow	Sunnyside Diversion Dam	Thief Valley Dam	Unity Dam	Warm Springs Dam
Agency		Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation
Analysis Performed by		CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM
Project Location (State)		Idaho	Oregon	Washington	Oregon	Idaho	Washington	Oregon	Oregon	Oregon
		•								
Transmission Voltage	kV	115	115	115			11			138
T-Line Length	miles	2.27	2.66	3.65			5.98			0.67
Fish and Wildlife Mitigation		No	No	No	No		No	No	No	No
Recreation Mitigation		No	No	No	No		No	Yes	No	No
Historical & Archaeological Water Quality Monitoring		No No	No No	No No	No No		Yes No	No No	No No	No No
Fish Passage Required		No	No	NO	No		No	No	No	No
Results		iio	110	No	110			No	No	
Input Data Analysis										
Data Set	years	31	27	Δ	7		20	28	28	31
Max Head	ft	150.0	99.7	13.0	1.3		6.0	-		74.1
Min Head	ft	86.7	41.8	13.0			6.0			0.0
Max Flow	cfs	1,750	1,940	2,800	20		44,000	2,370	1,030	3,030
Min Flow	cfs	0	3	0	0		56	5 (0	0
Turbine Selection Analysis						Site has flows less than 12 cfs 95% of the time; flows are too low for hydropower development				
Selected Turbine Type		Francis	Francis	Kaplan	Low Head		Kaplan	Kaplan	Kaplan	Kaplan
Selected Design Head	ft	132	96	13			(6 39		57
Selected Design flow	cfs	104 600	138 600	2,800 600			3,630			346 600
Generator Speed Max Head Limit	rpm	600 165.2	600 119.7	16.3			600 7.5			600 71.3
Min Head Limit	ft	85.9	62.2	8.4			3.9			37.1
Max Flow Limit	cfs	104	138	2,800			3,63			346
Min Flow Limit	cfs	21	28	2,000			72			69
Power Generation Analysis										
Installed Capacity	kW	993	955	2,276			1,362			1,234
Plant Factor		0.44	0.45	0.57	0.42		0.87	7 0.58	0.50	0.31
Projected Monthly Production:	MWH		202							
January February*	MWH	31	286 204		0		73			83 106
March	MWH	118	320		0		86			100
April	MWH	213	267	1,873			1,002			422
May	MWH	559	274	1,873	0		1,067	7 257	266	419
June	MWH	608	332	1,873	0		1,05	5 256	243	466
July	MWH	481	581	1,873			1,04	B 196	209	606
August	MWH	487	548	1,873			1,02 ⁻			530
September	MWH	584	409	1,858	0		820	,	51	319
October	MWH	440	184	0	0		575			88
November	MWH	209	89 189	0	0		603			0
December Annual production*	MWH MWH	42 3,778	3,683	11,238			644 10,182		A	40 3,256
* For non-leap year	MWH	3,778	3,083	11,238	9 <u></u> 0		10,18	2 1,833	1,329	3,230
Benefit/Cost Analysis										
Projected expenditure to implement project	-			· · · · · ·					· · · · · · · · · · · · · · · · · · ·	
Total Construction Cost Annual O&M Cost		\$ 3,636,873 \$ 131,486					\$ 6,912,015			\$ 4,326,638
Projected Total Cost over 50 year period	+	\$ 131,486 \$ 5,630,262					\$ 205,420 \$ 9,926,009			
Projected Total Cost over 50 year period		ચ ચ ર,630,262	₽ 5,641,621	<i>ψ</i> 11,859,644	φ 1,409,200		୬ ୨, 926,009	♥ 3,908,299	φ 12,409,269	<i>ͽ</i> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>
Power generation income for 2014 to 2060		\$ 14,091,162	\$ 13,747,159	\$ 39,492,334	\$ 306		\$ 37,665,681	\$ 6,579,371	\$ 4,600,990	\$ 11,670,861
Green Energy Sellback income for 2014 to 2060	1	\$ 457,184					\$ 1,232,646			\$ 394,076
Projected Total Revenue over 50 year period (with Green Incentives)		\$ 5,302,485	5,185,751				\$ 14,227,525			-
	+	ψ <u>0,</u> 302,403	v ترين (100,751	¥ 14,303,009	* 115		¥ 14,227,323	¥ 2,432,709	v 1,743,210	¥ 4,413,001
Projected Total Revenue over 50 year period (w/o Green			4 070 740	\$ 14,050,434	\$ 109		\$ 13,381,383			\$ 4,149,090
		\$ 4,988,654	\$ 4,879,748	•,••••,.••						·
Projected Total Revenue over 50 year period (w/o Green Incentives) Benefit/Cost Ratio (with Green incentives)		0.94	0.92	1.26			1.43			0.66
Projected Total Revenue over 50 year period (w/o Green							1.4 1.3	5 0.60	0.13	0.62
Projected Total Revenue over 50 year period (w/o Green Incentives) Benefit/Cost Ratio (with Green incentives) Benefit/Cost Ratio (w/o Green incentives) Internal Rate of Return (with Green incentives)		0.94 0.89 3.8%	0.92 0.86 3.6%	1.26 1.18 6.6%	0.00 Negative		1.3 7.8%	5 0.60 6 0.1%	0.13 Negative	0.62 0.4%
Projected Total Revenue over 50 year period (w/o Green Incentives) Benefit/Cost Ratio (with Green incentives) Benefit/Cost Ratio (w/o Green incentives)		0.94 0.89	0.92 0.86	1.26 1.18 6.6%	0.00		1.3 7.8%	5 0.60	0.13	0.62
Projected Total Revenue over 50 year period (w/o Green Incentives) Benefit/Cost Ratio (with Green incentives) Benefit/Cost Ratio (w/o Green incentives) Internal Rate of Return (with Green incentives)		0.94 0.89 3.8%	0.92 0.86 3.6% 3.1%	1.26 1.18 6.6% 5.9%	0.00 Negative Negative		1.3 7.8%	0.60 6 0.1% 6 Negative	0.13 Negative Negative	0.62 0.4% 0.1%

Facility Name	1	Wares Derry	Million David	Mildle and David
Facility Name		Wasco Dam Reclamation	Wikiup Dam Reclamation	Wildhorse Dam Reclamation
Agency Analysis Performed by		CDM	CDM	CDM
Project Location (State)		Oregon	Oregon	Nevada
		0.050	0.090	
Transmission Voltage	kV	138	115	138
T-Line Length	miles	7.89	12.43	4.22
Fish and Wildlife Mitigation		No	No	No
Recreation Mitigation		No	Yes	No
Historical & Archaeological		No	No	No
Water Quality Monitoring		No	No	No
Fish Passage Required		No	No	No
Results Input Data Analysis				
Data Set	years	8	22	24
Max Head	ft	36.1	57.8	79.6
Min Head	ft	9.8	9.8	34.6
Max Flow Min Flow	cfs cfs	38 0	1,947 13	1,340 0
Turbine Selection Analysis				
Selected Turbine Type		Low Head	Kaplan	Francis
Selected Design Head	ft	25	55	70
Selected Design flow	cfs	9 600	1,157 200	53 600
Generator Speed Max Head Limit	rpm ft	600 30.9	68.2	87.1
Min Head Limit	ft	30.9	35.5	45.3
Max Flow Limit	cfs	9	1,157	
Min Flow Limit	cfs	2	231	11
Power Generation Analysis	-			
Installed Capacity	kW	13	3,950	
Plant Factor		0.24	0.46	0.35
Projected Monthly Production:			104	40
January February*	MWH MWH	0	494 553	13 15
March	MWH	0	642	33
April	MWH	1	1,558	43
May	MWH	1	2,774	101
June	мwн	4	2,915	149
July	MWH	6	2,663	162
August	MWH	7	1,633	149
September	MWH	5	1,015	
October	MWH	1	626	29
November December	MWH MWH	0	343 435	3
Annual production*	MWH	26		
* For non-leap year Benefit/Cost Analysis Projected expenditure to implement project		1 20	13,000	791
Total Construction Cost		\$ 2,968,531	\$ 15,178,550	\$ 2,872,969
Annual O&M Cost		\$ 2,500,331		\$ 2,072,909
Projected Total Cost over 50 year period	1	\$ 4,073,446		
Projected revenue after implementation of project Power generation income for 2014 to 2060		\$ 95,732		\$ 3,065,195
Green Energy Sellback income for 2014 to 2000		\$ 95,732 \$ 3,132		
Projected Total Revenue over 50 year period (with Green Incentives)		\$ 36,115		
Projected Total Revenue over 50 year period (w/o Green	1			
Incentives)		\$ 33,965		
Benefit/Cost Ratio (with Green incentives) Benefit/Cost Ratio (w/o Green incentives)		0.01	0.98	0.27
Internal Rate of Return (with Green incentives)		0.01	0.92	0.26 Negative
Internal Rate of Return (with Green incentives)	1	Negative Negative		Negative
	1		3.1 /0	
Installed Cost \$ per kW		\$ 231,744	\$ 3,843	\$ 10,764

					Azeotea Creek and Willow	Azeotea Creek and Willow	Azeotea Creek and Willow	Azotea Creek and Willow		I	
					Creek Conveyance Channel	Creek Conveyance Channel	Creek Conveyance Channel	Creek Conveyance Channel			
Facility Name		Angostura Diversion Dam Reclamation	Arthur V. Watkins Reclamation	Avalon Dam Reclamation	Station 1565+00 Reclamation	Station 1702+75 Reclamation	Station 1831+17 Reclamation	Outlet Reclamation	Azotea Tunnel Reclamation	Big Sandy Dam Reclamation	Blanco Diversion Dam Reclamation
Agency Analysis Performed by		CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM
Project Location (State)		New Mexico	Utah	New Mexico	New Mexico	New Mexico	New Mexico	New Mexico	New Mexico	Wyoming	New Mexico
			-			-	-			-	
	kV	115			115			115	115		115
T-Line Length Fish and Wildlife Mitigation	miles	0.65 No	1.99 No	2.76 No	5.00 No	5.00 No	5.00 No	5.00 No	5.00 No) 21.09 No	12.93 No
Recreation Mitigation		Yes	No	No	Yes	Yes	Yes	Yes	Yes	No	Yes
Historical & Archaeological		No	No	No	No	No	No	No	No	No	No
Water Quality Monitoring		No	No	No	No	No	No	No	No	No	No
Fish Passage Required		No	No	No	No	No	No	No	No	No	No
Results Input Data Analysis											
	vears	9	12	30	30	30	30	30	30	20	28
Max Head	ft	5.2			22.0		18.0	5.0	31.8		31.0
Min Head	ft	0.0		0.0	18.0			0.0	21.0		22.0
	cfs cfs	344	1,388	15,600	1,080	1,080	1,080	1,220	1,080	1,059	500
MIN FIOW	CIS	U		0	U	0	U	U	· · · ·	0	0
Turbine Selection Analysis											
Selected Turbine Type		Low Head	Low Head	Kaplan	Low Head	Low Head	Low Head	Low Head	Low Head	Kaplan	Low Head
Selected Design Head Selected Design flow	ft cfs	3 190	25		18 65			0 94	22		22 35
	rpm	600	600		600			94 600	600		600
Max Head Limit	ft	3.5		21.3	22.8	21.5	19.0	0.5	27.1		27.8
Min Head Limit	ft	1.8	16.3	11.1	11.9	11.2	9.9	0.3	14.1		14.5
	cfs cfs	190 38	20	216 43	65 13			<u>94</u> 19	65		35
Min Flow Limit	CIS	30	4	43	13	13	13	19	13	10	1
Power Generation Analysis											
	kW	33			72				86		47
Plant Factor		0.32	0.46	0.52	0.39	0.38	0.38	0.11	0.30	0.36	0.36
Projected Monthly Production: January	MWH	0	9	13	0		0	0		a	0
	MWH	0	7	21	0	0	0	0	0)) 1	0
	MWH	4	8	47	11	11	9	0	14	1 2	7
	MWH	11	11	145	48	45	40	0	51	7	27
,	MWH MWH	12	14	126	56	52	46	0	36	5 112 5 242	34
	MWH	15	9	136	33		-10	0	38		19
	MWH	16	11	123	19	18	16	0	22		13
	MWH	12	10	109	10	10	9	0	12	2 73	8
	MWH	4	9	106	8	7	7	0	9	3	6
November December	MWH MWH	0	12	42	0	0	0	0		4) 8	2
	MWH	91			240	223	199	1	222	2 884	146
* For non-leap year Benefit/Cost Analysis Projected expenditure to implement project											
Total Construction Cost		\$ 564,218	\$ 966,053	\$ 2,260,822	\$ 2,215,338	\$ 2,192,959	\$ 2,149,375	\$ 1,703,120	\$ 2,284,357	\$ 9,260,737	\$ 4,656,151
Annual O&M Cost		\$ 33,395	\$ 40,893	\$ 76,530		\$ 65,920	\$ 64,654				\$ 110,656
Projected Total Cost over 50 year period		\$ 1,099,804	\$ 1,599,467	\$ 3,409,315	\$ 3,194,123	\$ 3,162,200	\$ 3,100,126	\$ 2,472,810	\$ 3,292,616	\$ 12,191,619	\$ 6,203,700
Projected revenue offer implementation of project											
Projected revenue after implementation of project Power generation income for 2014 to 2060		\$ 340,315	\$ 451,377	\$ 3,825,368	\$ 873,836	\$ 814,153	\$ 723,424	\$ 3,964	\$ 815,564	\$ 3,220,406	\$ 533,360
Green Energy Sellback income for 2014 to 2060		\$ 340,313 \$ 11,019			\$ 29,022						\$ 333,300 \$ 17,685
Projected Total Revenue over 50 year period (with Green								•	• • • • • •		•
Incentives) Projected Total Revenue over 50 year period (w/o Green		\$ 128,605	\$ 170,075	\$ 1,446,138	\$ 330,920	\$ 308,311	\$ 273,956	\$ 1,497	\$ 308,685	\$ 1,217,430	\$ 201,945
Incentives)		\$ 121,041			\$ 310,998	\$ 289,756	\$ 257,466		\$ 290,248	\$ 1,143,993	\$ 189,806
Benefit/Cost Ratio (with Green incentives)		0.12			0.10			0.00	0.09		0.03
Benefit/Cost Ratio (w/o Green incentives)		0.11			0.10			0.00	0.09		0.03
Internal Rate of Return (with Green incentives) Internal Rate of Return (w/o Green incentives)		-	Negative Negative	Negative Negative	Negative Negative	Negative Negative	Negative Negative		Negative Negative	Negative Negative	Negative Negative
· · · · · · · · · · · · · · · · · · ·											
Installed Cost \$ per kW		\$ 17,183	\$ 31,426	\$ 9,818	\$ 30,674	\$ 32,238	\$ 35,760	\$ 772,084	\$ 26,649	\$ 32,416	\$ 98,200

										1	1
Facility Name		Blanco Tunnel	Brantley Dam	Caballo Dam	Crawford Dam	Currant Creek Dam	Dolores Tunnel	Duschesne Tunnel	East Canal	East Canyon Dam	Eden Dam
Agency		Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation
Analysis Performed by Project Location (State)		CDM New Mexico	CDM New Mexico	CDM New Mexico	CDM Colorado	CDM Utah	CDM Colorado	CDM Utah	CDM Colorado	CDM Utah	CDM Witeming
Project Location (State)		New Mexico	New Mexico	New Mexico	Colorado	Otan	Colorado	Otah	Colorado	Otan	Wyoming
Transmission Voltage	kV	115	115	115	138	115	115	138	11	5 13	3 115
	miles	12.93	2.18						4.24		
Fish and Wildlife Mitigation		No	No	Yes	No	No	No	No	No	No	No
Recreation Mitigation		Yes	No	No	No	Yes	Yes	Yes	No	No	No
Historical & Archaeological		No	No	No	No	No	No	No	No	No	No
Water Quality Monitoring		No	No	No	No	No	No	No	No	No	No
Fish Passage Required		No	No	No	No	No	No	No	No	No	No
Results Input Data Analysis											
Data Set	years	23	30	4	28	16	8	5	1'	1 10) 7
Max Head	ft	109.0	48.6	50.4	135.0	119.0	83.9	64.0	2.0	0 186.3	3 17.5
Min Head	ft	109.0	8.2		135.0			64.0	2.0		
	cfs	500	1,200	2,603	67	545	650	171	17	5 263	2 200
Min Flow	cfs	0	0	0	6	δ O	0 0	7		0	1 0
Turbine Selection Analysis											Site has seasonal flows about 1-2 months per year; flows are too low for hydropower development at 30% flow exceedance
Selected Turbine Type		Francis	Kaplan	Kaplan	Francis	Francis	Francis	Low Head	Low Head	Francis	
Selected Design Head	ft	109		-				64		2 170	
	cfs	35	-		31			21			
	rpm	600	600		600						
Max Head Limit Min Head Limit	π 4	136.3 70.8	19.2 10.0		168.8 87.8			80.0 41.6	2.		
	π cfs	70.8						41.0			
	cfs		44			3	3	4	24		
	010			240							,
Power Generation Analysis											
	kW	276	210	3,260	303	146	103	84	14	4 92	
Plant Factor		0.36							0.5		
Projected Monthly Production:			•	•		-	•	•		•	
January	MWH	1	6	0		70	40	21		0 44	1
;	MWH	0	15	141	35	62	31	19		0 164	1
	MWH	50				71		21		0 289	
	MWH	167	112		1	95		60		6 32	
	MWH	192						60		0 27	
	MWH	167		, ,	218		Ţ.	60		000	
	MWH	104		,	218			60		.	
•	MWH MWH	73 49	92 89	,	218			49	10	0 634 0 45	
	MWH	49	89 77	742				29	1	6 11	
Navandara		35	11	142	132	73	43	30			
	MWH	1	4		30	70	41	20			,
	MWH	849	697	15,095	1,217					2 3,54)
[•] For non-leap year Benefit/Cost Analysis Projected expenditure to implement project											
Total Construction Cost		\$ 5,526,661									
Annual O&M Cost		\$ 137,515									
Projected Total Cost over 50 year period		\$ 7,471,006	\$ 3,056,212	\$ 14,678,321	\$ 2,623,568	\$ 6,234,955	\$ 3,296,195	\$ 10,956,801	\$ 2,314,114	\$ 11,374,450	
Projected revenue after implementation of project											
Power generation income for 2014 to 2060 Green Energy Sellback income for 2014 to 2060		\$ 3,094,131									
Projected Total Revenue over 50 year period (with Green		\$ 102,758	\$ 84,379	\$ 1,826,599	\$ 147,225	\$ 121,359	\$ 62,298	\$ 55,479	\$ 7,471	\$ 429,575	
Incentives)		\$ 1,171,681	\$ 976,203	\$ 21,252,507	\$ 1,670,662	\$ 1,398,772	\$ 698,040	\$ 636,609	\$ 84,299	\$ 4,964,580	
Projected Total Revenue over 50 year period (w/o Green											
Incentives)		\$ 1,101,143									
Benefit/Cost Ratio (with Green incentives)		0.16									
Benefit/Cost Ratio (w/o Green incentives)		0.15									
Internal Rate of Return (with Green incentives)			Negative		Negative	Negative			Negative	Negative	
Internal Rate of Return (w/o Green incentives)		Negative	Negative	7.1%	Negative	Negative	Negative	Negative	Negative	Negative	
		A									,
Installed Cost \$ per kW		\$ 20,041	\$ 9,481	\$ 3,128	\$ 5,264	\$ 31,659	\$ 22,077	\$ 100,480	\$ 107,915	\$ 8,907	

Facility Name		Fruitgrowers Dam	Fort Sumner Diversion Dam	Garnet Diversion Dam	Grand Valley Diversion Dam	Gunnison Diversion Dam	Gunnison Tunnel	Hammond Diversion Dam	Heron Dam	Huntington North Dam	Hyrum Dam
Agency		Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation
Analysis Performed by		CDM	CDM New Mexico	CDM Colorado	CDM Colorado	CDM	CDM Colorado	CDM New Mexico	CDM New Mexico	CDM Utah	CDM Utah
Project Location (State)		Colorado	New Mexico	Colorado	Colorado	Colorado	Colorado	New Mexico	New Mexico	Otan	Otan
Transmission Voltage	kV	115	115	115	115	115	115	115	69	138	138
°	miles	5.66		5.00	5.00	5.00	5.00	5.00	4.97	0.76	8.61
Fish and Wildlife Mitigation		No	No	No	Yes	Yes	No	No	Yes	No	No
Recreation Mitigation		No	No	No	Yes	No	No	No	No	No	No
Historical & Archaeological		No	No	No	Yes	No	No	No	No	No	No
Water Quality Monitoring		No	No	No	No	No	No	No	No	No	No
Fish Passage Required		No	No	No	No	No	No	No	No	No	No
Results Input Data Analysis											
Data Set	years	7	30	11	15		30	6	29		7
Max Head	ft	32.6		2.0	14.0	17.0	70.0	7.9	274.9	58.2	83.0
Min Head	ft	8.1	11.0	2.0	14.0	17.0	70.0	7.9	234.0	38.9	47.3
	cfs	67	141	65	29,600	10,600	1,191	92	2,780	37	1,300
Min Flow of the second se	cfs	0	0	0	58	65	0	0	0	0	0
Turbine Selection Analysis											
Selected Turbine Type	<i>.</i> ,	Low Head	Low Head	Low Head	Kaplan	Kaplan	Kaplan	Low Head	Francis	Low Head	Francis
Selected Design Head Selected Design flow	ft cfs	28	14 90	2	14 2,260	17 1,350		8 71	249 150	55	75 90
	crs rpm	600			2,260	1,350	300	600	600		90
Max Head Limit	rpin ft	34.9		2.5	17.5	21.3	87.5	9.9	311.4	68.7	94.4
Max read Limit	ft	18.1		1.3	9.1	11.0	45.5	5.2	161.9	35.7	49.1
	cfs	17	90	44	2,260	1,350	875	71	150		90
	cfs	3	18	9	452		175		30		18
				· · · · ·				<u>. · · ·</u>			
Power Generation Analysis											
Installed Capacity	kW	29	75	5	1,979	1,435	3,830	35	2,701	20	491
Plant Factor		0.50	0.59	0.46	0.84	0.75	0.58	0.49	0.38	0.30	0.49
Projected Monthly Production:											
	MWH	1	1	0	1,239	804	1,555	0	719		122
	MWH	4	8	0	1,156	752	1,458	0	882	0	111
	MWH	6	41	0	1,341	796	1,567	0	1,458	1	126
· ·	MWH	8	47	2	1,148	695	1,577	13	1,384	3	303
	MWH MWH	14 19	48	4	1,525 1,550	796	1,586 1,594	25 25	232 252		348
	MWH	21	-	4	1,550	782 791	1,594	25	622	9	308 290
	MWH	21		4	836	756	1,610	25	587	10	193
	MWH	18	46	3	815	736	1,616	25	601	5	72
	MWH	11	44	1	881	716	1,624	12	346	4	32
November	мwн	0	0	0	1,357	772	1,631	0	828	2	72
December	MWH	1	0	0	1,252	825	1,637	0	961	1	74
Annual production*	MWH	124	378	21	14,246	9,220	19,057	148	8,874	51	2,052
* For non-leap year Benefit/Cost Analysis Projected expenditure to implement project											
Total Construction Cost		\$ 2,116,455	\$ 2,213,565	\$ 1,713,350	\$ 9,070,007	\$ 6,934,923	\$ 11,385,453	\$ 1,983,291	\$ 8,020,434	\$ 514,449	\$ 5,081,267
Annual O&M Cost		\$ 62,163		\$ 52,658							
Projected Total Cost over 50 year period		\$ 3,026,516	\$ 3,201,979				\$ 16,842,323	\$ 2,869,582	\$ 11,660,934	\$ 1,024,829	\$ 7,120,367
Projected revenue after implementation of project											
Power generation income for 2014 to 2060		\$ 446,536									
Green Energy Sellback income for 2014 to 2060		\$ 15,045	\$ 45,783	\$ 2,556	\$ 1,724,626	\$ 1,116,154	\$ 2,307,102	\$ 17,886	\$ 1,074,468	\$ 6,223	\$ 248,418
Projected Total Revenue over 50 year period (with Green		•			•	•	•	•	• • • • • • • • • • • • • • • • • • • •	•	•
Incentives) Projected Total Revenue over 50 year period (w/o Green		\$ 170,188	\$ 528,556	\$ 28,899	\$ 19,392,086	\$ 12,592,700	\$ 26,025,179	\$ 208,761	\$ 12,413,640	\$ 71,840	\$ 2,838,438
Incentives)		\$ 159,860	\$ 497,129	\$ 27,144	\$ 18,208,229	\$ 11,826,524	\$ 24,441,485	\$ 196,483	\$ 11,676,080	\$ 67,568	\$ 2,667,913
Benefit/Cost Ratio (with Green incentives)		0.06			1.55		1.55		1.06		0.40
Benefit/Cost Ratio (w/o Green incentives)		0.05			1.55		1.45		1.00		0.40
Internal Rate of Return (with Green incentives)		Negative		Negative	8.6%			Negative			Negative
Internal Rate of Return (w/o Green incentives)		Negative	Negative	Negative	7.7%			Negative		Negative	Negative
_			•	-				- ·		-	
Installed Cost \$ per kW		\$ 72,409	\$ 29,472	\$ 321,090	\$ 4,584	\$ 4,832	\$ 2,972	\$ 57,350	\$ 2,970	\$ 25,611	\$ 10,346

								1			
Facility Name		Inlet Canal	Ironstone Canal	Isleta Diversion Dam	Joes Valley Dam	Layout Creek	Little Oso Div Dam	Lost Creek Dam	Lost Lake Dam	Loutzenheizer Canal	M&D Canal - Shavano Falls
Agency		Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation
Analysis Performed by		CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM
Project Location (State)		Colorado	Colorado	New Mexico	Utah	Utah	Colorado	Utah	Utah		Colorado
Transmission Voltage	kV	115	115	115	138	138	115	115	138	3 11	5 115
T-Line Length	miles	5.00	5.00		7.68				25.55		
Fish and Wildlife Mitigation		No	No	No	Yes	No	No	No	No	No	No
Recreation Mitigation		No	No	No	Yes	Yes	Yes	No	Yes	No	No
Historical & Archaeological		No	No	Yes	No	No	No	No	No	No	No
Water Quality Monitoring		No No	No No	No No	No	No	No	No	No	No No	No
Fish Passage Required		NO	NO	NO	No	No	No	No	No	NO	No
Results Input Data Analysis											
Data Set	years	16	11	9	9	10	30	13	13	3 1	1 1
Max Head	ft	159.0	0.0		175.3	249.0	9.5	187.4	24.0	0.	D
Min Head	ft	159.0	0.0		122.5	249.0	9.5	15.0	0.5	5 0.	D
	cfs	900	343	2,066	743	7	165	499	61	1 16	В
Min Flow	cfs	0	0	0	2	0	(0	(D	D
Turbine Selection Analysis Selected Turbine Type			No head available for hydropower potential	Kaplan	Francis	Low Head	Low Head	Pelton	Low Head	No head available for hydropower potential	Insufficient data (< 3 years); Low Confidence Results Francis
Selected Design Head	ft	159		0	159			164		7	165
	cfs	22		433	141		8	34		1	240
Generator Speed	rpm	600		600	600	600	600	600	600	D	600
Max Head Limit	ft	174.9		0.4	199.0	311.3	11.9	180.6	21.7		206.3
Min Head Limit	ft	103.3		0.2	103.5	161.8	6.2		11.3	3	107.2
Max Flow Limit Min Flow Limit	cfs cfs	22		433 87	141 28		8	34	1	1	240
	kW	252		8	1,624			410		1	2,862
Plant Factor		0.45		0.00	0.47	0.79	0.55	0.37	0.14	4	0.62
Projected Monthly Production: January	MWH	12		0	85	13		68		h	1 0
	MWH	12		0	80	13		74		0	0
*	MWH	68		0	78	13	2	71	(D	902
•	MWH	166		0	297			74		D	1,967
,	MWH	174		0	1,033			83		0	2,061
	MWH MWH	165		0	1,223 1,183	15		134			2,061 2,061
	MWH	121 105		0	1,183	13	4	213			2,061
	MWH	83		0	854			181		D	1,975
	MWH	28		0	468			91		D	1,405
	MWH	19		0	116		1	65		D	927
	MWH	9		0	98		1	66		0	0
	MWH	966		0	6,596	165	21	1,295		1	15,419
* For non-leap year Benefit/Cost Analysis Projected expenditure to implement project											
Total Construction Cost Annual O&M Cost		\$ 2,596,626		\$ 1,788,655 \$ 54,265							\$ 7,260,364
Annual O&M Cost Projected Total Cost over 50 year period		\$ 82,694 \$ 3,825,093		\$ 54,365 \$ 2,589,632	\$ 210,501 \$ 10,797,307						\$ 256,570 \$ 11,136,740
		φ <u>3,6</u> 20,093		φ 2,009,032	φ 10,797,307	φ 3,104,575	<i>♥</i> 2,470,240	φ 0,921,256	φ 12,173,333	<u> </u>	φ 11,130,740
Projected revenue after implementation of project										-	
Power generation income for 2014 to 2060		\$ 3,422,764		\$ 1,024							\$ 55,009,926
Green Energy Sellback income for 2014 to 2060 Projected Total Revenue over 50 year period (with Green		\$ 116,868		\$ 34	\$ 798,219	\$ 19,923	\$ 2,561	\$ 156,801	\$ 147		\$ 1,865,729
Incentives)		\$ 1,306,269		\$ 387	\$ 9,197,841	\$ 229,733	\$ 28,639	\$ 1,822,418	\$ 1,713		\$ 20,981,443
Projected Total Revenue over 50 year period (w/o Green											
Incentives)		\$ 1,226,046		\$ 364				\$ 1,714,783			\$ 19,700,723
Benefit/Cost Ratio (with Green incentives) Benefit/Cost Ratio (w/o Green incentives)		0.34		0.00	0.85						1.88
Internal Rate of Return (with Green incentives)		0.32 Negative		0.00 Negative			0.01 Negative		0.00 Negative		1.77
Internal Rate of Return (who Green incentives)		Negative		Negative	2.6%	Negative	Negative	Negative	Negative	1	10.1%
		-		-	,		-				-
Installed Cost \$ per kW		\$ 10,320		\$ 217,625	\$ 4,780	\$ 155,835	\$ 381,880	\$ 16,082	\$ 8,970,928		\$ 2,536

Facility Name		Meeks Cabin Dam	Montrose and Delta Canal	Moon Lake Dam	Nambe Falls Dam	Newton Dam	Oso Diversion Dam	Outlet Canal	Paonia Dam	Platoro Dam	Red Fleet Dam
Agency		Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation
Analysis Performed by		CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM
Project Location (State)		Wyoming	Colorado	Utah	New Mexico	Utah	Colorado	Colorado	Colorado	Colorado	Utah
	kV 	138				115	115		115		
T-Line Length	miles	21.00 No	5.00 No	13.18 No	4.18 No	1.79 No	5.00 No	5.00 No	8.32 Yes	23.64 No	4.04 No
Fish and Wildlife Mitigation Recreation Mitigation		NO	NO	Yes	NO	NO	No	NO	No	NO	NO
Historical & Archaeological		No	No	No	Yes	No	No	No	No	No	No
Water Quality Monitoring		No	No	No	No	No	No	No	No	No	No
Fish Passage Required		No	No	No	No	No	No	No	No	No	No
Results Input Data Analysis											
Data Set	years	11	11	7	6	3	30	16	16	53	15
Max Head	ft	156.4	3.0	82.6	120.0	75.9	0.0	252.0	172.8	131.0	125.5
Min Head	ft	59.1	3.0	27.9	120.0	45.1	0.0	252.0	73.0	131.0	81.8
Max Flow	cfs	1,485	604	1,339	109	232	1,181	97	3,404	328	300
Min Flow	cfs	2	0	0	1	0	7	0	0	10	0
Turbine Selection Analysis						•	No head available for hydropower potential				
Selected Turbine Type		Francis	Kaplan	Francis	Francis			Pelton	Francis	Francis	Francis
Selected Design Head	ft	130	· · · · · · · · · · · · · · · · · · ·	66	120			252	149		
Selected Design flow	cfs	169			17			32	147	89	
Generator Speed	rpm	600			600			600	600		600
Max Head Limit	ft	162.4			150.0			277.2	186.2	163.8	143.1
Min Head Limit	ft	84.4	1.9	42.6	78.0			163.8	96.8	85.1	74.4
Max Flow Limit	cfs	169						32	147	89	55
Min Flow Limit	cfs	34	102	27	3			6	29	18	11
Power Generation Analysis Installed Capacity Plant Factor	kW	1,586 0.35		634 0.29				586 0.37	1,582 0.43		
Projected Monthly Production:											
	MWH	0	0	0	1			0	41		33
	MWH	0	0	0	6			0	85		20
	MWH	0	0	0	38			0	321		32
	MWH MWH	8	50 77	94	77			3	582		130
May June	MWH	769 1,234	77	412	94			233 388	<u>953</u> 952		313 340
	MWH	1,234	79	276	90			388	952	608	340
	MWH	812		229	81			390	942		304
	MWH	581		83	66			290	587	311	230
October	MWH	198		27	33			92	219		
	MWH	31	0	0	10			31	171		40
December	MWH MWH	0	0	0	0			13	104	0	39
Annual production*	MWH	4,709	478	1,563	593			1,839	5,821	3,747	1,904
* For non-leap year Benefit/Cost Analysis Projected expenditure to implement project											
Total Construction Cost Annual O&M Cost		\$ 11,641,242						\$ 3,264,806			
Annual O&M Cost Projected Total Cost over 50 year period	\vdash	\$ 302,269						\$ 108,642 S			
Projected rotal Cost over 50 year period		\$ 15,956,360	\$ 3,386,402	\$ 9,965,976	\$ 3,463,755			\$ 4,890,695	\$ 10,062,365	\$ 13,575,512	\$ 4,527,407
Power generation income for 2014 to 2060	T	\$ 17,030,332	\$ 1,713,426	\$ 5,698,281	\$ 2,196,546			\$ 6,658,669	\$ 20,822,512	\$ 13,465,942	\$ 7,023,602
Green Energy Sellback income for 2014 to 2060		\$ 569,825						\$ 222,567	\$ 704,385		
Projected Total Revenue over 50 year period (with Green Incentives) Projected Total Revenue over 50 year period (w/o Green		\$ 6,441,788						\$ 2,535,836	\$ 7,939,048	\$ 5,132,795	
Projected Total Revenue over 50 year period (w/o Green Incentives)		\$ 6,050,634	\$ 613,519	\$ 2,022,473	\$ 781,340			\$ 2,383,056	\$ 7,455,527	\$ 4,821,559	\$ 2,491,308
Benefit/Cost Ratio (with Green incentives)	┝──┨	\$ 6,050,634 0.40	-					\$ 2,383,056	۲,455,52 <i>1</i> 0.79		\$ 2,491,308
Benefit/Cost Ratio (w/n Green incentives)	\vdash	0.40						0.32	0.79		
Internal Rate of Return (with Green incentives)	— ,		Negative	Negative	Negative			Negative		Negative	Negative
Internal Rate of Return (w/o Green incentives)		Vegative	Negative	Negative	Negative			Negative		Negative	Negative

	1										
Facility Name		Ridgway Dam	Rhodes Diversion Dam	Rifle Gap Dam	San Acacia Diversion Dam	Scofield Dam	Selig Canal	Silver Jack Dam	Sixth Water Flow Control	Soldier Creek Dam	South Canal Tunnel
Agency		Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation
Analysis Performed by Project Location (State)		CDM Colorado	CDM Utah	CDM Colorado	CDM New Mexico	CDM Utah	CDM Colorado	CDM	CDM Utah	CDM Utah	CDM Colorado
Project Location (State)		Colorado	Utan	Colorado	New Mexico	Utan	Colorado	Colorado	Utan	Utan	Colorado
Transmission Voltage	kV	138	138	138	115	138	115	115	138	138	115
ů.	miles	6.62	14.78	0.04	5.00			7.59	6.14	0.56	5.00
Fish and Wildlife Mitigation		Yes	No	Yes	Yes	No	No	No	Yes	Yes	No
Recreation Mitigation		No	Yes	No	Yes	No	No	No	Yes	No	No
Historical & Archaeological		No	No	No	No	No	No	No	No	No	No
Water Quality Monitoring		No	No	No	No	No	No	No	No	No	No
Fish Passage Required		No	No	No	No	No	No	No	No	No	No
Results Input Data Analysis											
	years	19	22	6	4	11	11	7	12	13	19
Max Head	ft	192.9	7.0		7.5	49.4	2.0	127.0	1149.0	243.5	18.0
Min Head	ft	80.9	7.0	65.8	7.5	18.8	2.0	53.8	1149.0	191.0	18.0
	cfs	1,141	83	165	156	365	254	899	623	2,648	999
Min Flow	cfs	27	0	0	0	0	0	0	20	0	0
Turbine Selection Analysis											
Selected Turbine Type		Francis	Low Head	Francis	Low Head	Kaplan	Low Head	Francis	Pelton	Pelton	Kaplan
Selected Design Head	ft	181	7	101	8	39	-	103	1,149	233	18
	cfs rpm	257 600	600	46 600	44 600			101 600	309 360	26 600	785 600
· · ·	ft	226.8	8.8	126.9	9.4			128.6	1263.9	256.2	22.5
Min Head Limit	ft	117.9	4.5	66.0	4.9		1.3	66.9	746.8	151.4	11.7
	cfs	257	2	46	44			101	309	26	785
	cfs	51	0	9	9	22	37	20	62	5	157
				•		•	•				
Power Generation Analysis											
	kW	3,366	1	341	20			748	25,800	444	884
Plant Factor		0.49	0.53	0.59	0.50	0.40	0.50	0.46	0.52	0.76	0.59
Projected Monthly Production: January	MWH	275	0	51	4	4	0	36	3,732	193	0
	MWH	275	0	120	4	4	0	60	2,741	193	0
	MWH	461	0	126	6	35		39	1,081	193	92
	MWH	1,315	0	137	5	46	10	107	6,323	294	519
May	MWH	1,865	0	213	8	97	16	471	13,092	302	659
	MWH	2,164	0	233	10	148	16	648	17,137	305	674
	MWH	2,334	0	223	13	210		608	18,576	299	710
	MWH	2,157	0	203	12	166	16	516	18,576	278	724
	MWH MWH	1,406 968	0	179 136	11	117	15	293 83	17,716 6,806	270 205	662 447
		968 480	0	136	Г А	60	9	83	6,806 4,445	205	
December	MWH MWH	360	0	55	4	n	0	38	4,445 4,196	196	0
	MWH	14,040	3	1,740		906	98				4,497
* For non-leap year Benefit/Cost Analysis Projected expenditure to implement project				· · · ·							<u></u>
Total Construction Cost		\$ 9,885,093				\$ 1,780,472					
Annual O&M Cost		\$ 296,172	\$ 124,171	\$ 65,544	\$ 57,158	\$ 69,280	\$ 57,079				
Projected Total Cost over 50 year period		\$ 14,237,188	\$ 7,208,479	\$ 2,587,998	\$ 2,735,950	\$ 2,841,858	\$ 2,710,340	\$ 7,002,454	\$ 53,081,723	\$ 2,909,106	\$ 7,295,714
Projected revenue after implementation of project											
Power generation income for 2014 to 2060		\$ 50,461,877				\$ 3,373,167					\$ 16,096,447
Green Energy Sellback income for 2014 to 2060		\$ 1,699,018	\$ 401	\$ 210,659	\$ 10,375	\$ 109,679	\$ 11,911	\$ 352,529	\$ 13,847,026	\$ 352,147	\$ 544,183
Projected Total Revenue over 50 year period (with Green Incentives)		¢ 40.000.000	¢ 4.040	¢ 0.070.407	¢ 404 540	¢ 4 074 707	¢ 404.440	¢ 2.000.100	¢ 400.005.111	¢ 4.050.750	¢ 0407.044
Projected Total Revenue over 50 year period (w/o Green		\$ 19,232,309	\$ 4,616	\$ 2,372,467	\$ 121,542	\$ 1,271,727	\$ 134,418	\$ 3,999,429	\$ 160,305,114	\$ 4,052,759	\$ 6,137,241
Incentives)		\$ 18,066,028	\$ 4,341	\$ 2,227,861	\$ 114,420	\$ 1,196,438	\$ 126,241	\$ 3,757,437	\$ 150,799,901	\$ 3,811,030	\$ 5,763,689
Benefit/Cost Ratio (with Green incentives)		1.35	0.00	0.92	0.04	0.45			3.02		0.84
Benefit/Cost Ratio (w/o Green incentives)		1.27	0.00	0.86		0.42			2.84		0.79
Internal Rate of Return (with Green incentives)		7.3%	Negative		Negative	Negative		Negative	17.1%		2.8%
Internal Rate of Return (w/o Green incentives)		6.5%	Negative	2.9%	Negative	Negative	Negative	Negative	15.3%	7.0%	2.4%
Installed Cost \$ per kW		\$ 2,937	\$ 7,579,045	\$ 4,621	\$ 94,272	\$ 6,700	\$ 82,287	\$ 6,504	\$ 1,482	\$ 4,033	\$ 5,665
		Ψ 2,937	Ψ (,ວ/9,045	Ψ 4,021	Ψ 94,272	Ψ 0,700	Ψ 02,287	ψ 0,304	Ψ 1,482	Ψ 4,033	Ψ 3,003

		South Canal, Sta 19+10 "Site	South Canal, Sta. 106+65,	South Canal, Sta. 181+10,	South Canal, Sta. 427+00,			Spanish Fork Flow Control			
Facility Name		#1"	"Site #3"	"Site #4"	"Site #5"	Southside Canal (2 drops)	Southside Canal (3 drops)	Structure	Strawberry Tunnel Turnout	Starvation Dam	Stateline Dam
Agency		Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation
Analysis Performed by		CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM	CDM
Project Location (State)		Colorado	Colorado	Colorado	Colorado			Utah	Utah	Utah	Utah
, s	kV	115	115			115					69
	miles	5.00	5.00	5.00	5.00	5.00	5.00	3.50		8.90	19.35
Fish and Wildlife Mitigation Recreation Mitigation		No	No	No	No	No	No	Yes	No	Yes	No
Historical & Archaeological		No No	No No	No No	No No	No No	No No	No No	Yes No	No No	Yes No
Water Quality Monitoring		No	No	No	No	No	No	No	No	No	No
Fish Passage Required		No	No	No	No	No	No	No	No	No	No
Results											
Input Data Analysis											
Data Set	years	14	14	14	14	1	1	3	7	23	11
Max Head	ft	51.0	46.0	63.0	28.0			900.0	2.0		118.3
Min Head	ft	51.0	46.0	63.0	28.0			900.0	2.0	111.9	58.5
	cfs	928	928	928	928			380	71	1,900	560
Min Flow	cfs	0	0	0	0			0	8	0	0
Turbine Selection Analysis							Insufficient data (< 3 years); Low Confidence Results				
Selected Turbine Type		Kaplan	Kaplan	Kaplan	Kaplan	Francis	Francis	Pelton	Low Head	Francis	Francis
Selected Design Head	ft	51	46	63	28	346	282	900		144	89
	cfs	773	773		773	81	81	124			44
Generator Speed Max Head Limit	rpm 4	300 63.8	300 57.5	300 78.8	600 35.0	600 432.5	600 352.5	600 990.0	600 2.5		600 111.1
Min Head Limit	ft	33.1	29.9	40.9	18.2	432.5	183.3	585.0	1.3	93.7	57.8
	cfs	773	773	773	773	81	81	124		292	44
	cfs	155	155			16	16	25			9
Power Generation Analysis											
Installed Capacity	kW	2,465	2,224	3,046	1,354	2,026	1,651	8,114	3	3,043	282
Plant Factor		0.59	0.59	0.59	0.59	0.38	0.38	0.33	0.90	0.50	0.30
Projected Monthly Production:											
	MWH	0	0	0	0	0	0	1,947	2	431	4
	MWH	0	0	0	0	0	0	1,796	2	354	3
	MWH	309	279	382	170	0	0	1,947	2	562	3
	MWH MWH	1,448 1,799	1,306 1,623	1,788 2,222	795 988	722	589	18	2	1,147 1,847	395
	MWH	1,799	1,625	2,222	988	1,459	1,189	2,624	2	1,847	95 104
	MWH	1,978	1,784	2,300	1,020	1,459	1,189	3,895	2	1,872	115
	MWH	2,025	1,826	2,501	1,112	1,459	1,189	3,887	2	1,946	146
	MWH	1,814	1,637	2,241	996	1,459	1,189	2,927	2	1,541	146
	MWH	1,212	1,093	1,497	665	0	0	16	2	708	81
	MWH	123	111	152	68	0	0	1,916	2	514	17
	MWH	0	0	0	0	0	0	1,947	2	483	4
Annual production*	MWH	12,576	11,343	15,536	6,905	6,557	5,344	22,920	27	13,168	720
* For non-leap year Benefit/Cost Analysis Projected expenditure to implement project Total Construction Cost		\$ 8,883,365	¢ 9 200 672	¢ 0.075.064	¢ 6 455 442	¢ 5.505.000	¢ E 460.704	¢ 42 447 522	¢ 2.046.052	¢ 40 520 547	¢ 8 402 441
Annual O&M Cost		\$ 8,683,365 \$ 280,479									
Projected Total Cost over 50 year period		\$ 13,043,815									
		- 10,040,010	- 12,515,220	+ 14,700,730	- 3,010,200	- 0,013,300	- 1,000,000	- 13,000,400	- 3,330,203	- 1,350	- 1,107,003
Projected revenue after implementation of project											
Power generation income for 2014 to 2060		\$ 45,022,711	\$ 40,608,655	\$ 55,616,422	\$ 24,718,363	\$ 23,709,467	\$ 19,323,897	\$ 86,975,912	\$ 98,660	\$ 48,637,539	\$ 2,673,199
Green Energy Sellback income for 2014 to 2060		\$ 1,521,755									
Projected Total Revenue over 50 year period (with Green											
Incentives) Projected Total Revenue over 50 year period (w/o Green		\$ 17,165,886	\$ 15,482,932	\$ 21,204,968	\$ 9,424,413	\$ 9,029,597	\$ 7,359,381	\$ 32,698,440	\$ 37,163	\$ 18,339,736	\$ 1,007,824
Incentives)		\$ 16,121,285	\$ 14,540,744	\$ 19,914,575	\$ 8,850,906	\$ 8,484,995	\$ 6,915,515	\$ 30,793,746	\$ 34,952	\$ 17,245,814	\$ 948,061
Benefit/Cost Ratio (with Green incentives)		1.32	1.26			1.05					0.09
Benefit/Cost Ratio (w/o Green incentives)		1.24	1.18			0.99	0.88	1.57			0.08
Internal Rate of Return (with Green incentives)		7.1%	6.6%			4.8%			Negative		Negative
Internal Rate of Return (w/o Green incentives)		6.3%	5.9%			4.2%	3.2%		Negative	5.6%	Negative
Installed Cost \$ per kW		\$ 3,603	\$ 3,777	\$ 3,275	\$ 4,548	\$ 2,762	\$ 3,131	\$ 1,620	\$ 848,278	\$ 3,461	\$ 30,145

									Upper Diamond Fork Flow		
Facility Name		Steinaker Dam	Stillwater Tunnel	Sumner Dam	Swasey Dam	Syar Tunnel	Taylor Park Dam	Trial Lake Dam	Control Structure	Upper Stillwater Dam	Vat Diversion Dam
Agency Analysis Performed by		Reclamation CDM	Reclamation CDM	Reclamation CDM	Reclamation CDM	Reclamation CDM	Reclamation CDM	Reclamation CDM	Reclamation CDM	Reclamation CDM	Reclamation CDM
Project Location (State)		Utah	Utah	New Mexico	Utah	Utah	Colorado	Utah	Utah	Utah	Utah
		• tuit	•••••		• tun	C turi					
Transmission Voltage	kV	115	138	115	138	138	115	115	138	115	115
T-Line Length	miles	0.99	12.24	3.94	5.40	7.68	14.62	26.36	4.34	12.27	16.11
Fish and Wildlife Mitigation		No	No	Yes	No	Yes	Yes	No	Yes	No	No
Recreation Mitigation		No	Yes	No	No	Yes	No	Yes	Yes	Yes	Yes
Historical & Archaeological Water Quality Monitoring		No No	No No	No No	No No	No No	No No	Yes No	No No	No No	No No
Fish Passage Required		No	No	No	No	No	No	No	No	No	No
Results					-		-				
Input Data Analysis											
Data Set	years	10	13	30	11	5	44	12	12	13	22
Max Head	ft	131.6	65.0		5.1	125.0	155.7	36.3	547.0	185.8	20.5
Min Head	ft	62.2	65.0		5.1	125.0	0.0	0.0	547.0	40.1	20.5
	cfs cfs	200	299	1,690	86	471	1,830	119	<u> </u>		298
MIN FIOW	CIS	U	0	0	U	U	4	U	20	U	0
Turbine Selection Analysis											Site has low seasonal flows about 3-5 months per year, flows are too low for hydropower development at 30% flow exceedance
Selected Turbine Type		Francis	Francis	Francis	Low Head	Francis	Francis	Low Head	Francis	Francis	
Selected Design Head	ft	120	65		5	125	141	28			
	cfs	70	88	100	9	195	250	6	309		
Generator Speed Max Head Limit	rpm 4	600 149.9	600 81.3	600 142.1	600 6.4	600 156.3	600 175.9	600 34.9	600 683.8	600 201.4	
Min Head Limit	ft	78.0	42.3	73.9	3.3	81.3	91.5	18.1	355.5	104.7	
Max Flow Limit	cfs	70	88	100	9	195	250	6	309	50	
Min Flow Limit	cfs	14	18	20	2	39	50	1	62	10	
Power Generation Analysis											
	kW	603 0.38	413 0.38	822	3	1,762 0.53	2,543	10	12,214 0.50		
Plant Factor Projected Monthly Production:		0.38	0.38	0.61	0.34	0.53	0.57	0.18	0.50	0.38	
	MWH	18	24	86	0	585	450	0	1,481	108	
	MWH	24		160	0	517	419	1	1,050	83	
	MWH	26	129	480	0	494	589	1	401	36	
	MWH	101	162		0	191	850	0	2,759	0	
	MWH	340	202	520	1	434	1,128	1	6,010	33	
	MWH	406	190	531	1	1,110	1,542	1	8,139	298	
	MWH MWH	384 342	198 153	493 482	2	1,269 1,268	1,825 1,801	4	8,794 8,794	<u> </u>	
*	MWH	246		486	2	1,032	1,619	2	8,436	216	
	MWH	77	86	468	0	80	1,089	1	2,868	208	
November	MWH	0	79	24	0	491	657	0	1,797	154	
	MWH	0	34	48	0	514		0	1,632		
	MWH	1,965	1,334	4,300	8	7,982	12,488	14	52,161	1,904	
* For non-leap year Benefit/Cost Analysis Projected expenditure to implement project		¢ 0000070	¢	•	a		40.001.000	¢		¢ 0001.107	
Total Construction Cost Annual O&M Cost		\$ 2,388,352 \$ 93,879				\$ 8,246,112 \$ 222,716					
Projected Total Cost over 50 year period	┝──┼	\$ 3,828,574									
Projected revenue after implementation of project Power generation income for 2014 to 2060											
Green Energy Sellback income for 2014 to 2060	├──╂	\$ 7,252,940 \$ 237,780			\$ 29,467 \$ 950						
Projected Total Revenue over 50 year period (with Green	┝──┦	- 251,700	+ 101,477	- 520,409	- 330	÷ 500,242	÷ 1,911,417	¥ 1,r40	÷ 0,512,290	÷ 230,300	
Incentives)		\$ 2,736,370	\$ 1,846,375	\$ 6,007,888	\$ 11,102	\$ 11,289,262	\$ 17,128,090	\$ 20,577	\$ 73,088,349	\$ 2,705,578	
Projected 1 otal Revenue over 50 year period (w/o Green Incentives)		¢ 0.570.4.5	¢ 4 705 500	¢	¢ 10.170	¢ 40.005.004	¢ 40.000 F00	¢	¢ 00.755.000	¢ 0547640	
Benefit/Cost Ratio (with Green incentives)	┝──╄	\$ 2,573,147 0.71				\$ 10,625,991 0.99	\$ 16,090,586 1.12				
Benefit/Cost Ratio (w/o Green incentives)	┝──┦	0.71	0.21		0.00	0.99	1.12				
Internal Rate of Return (with Green incentives)			Negative		Negative	4.3%		Negative		Negative	
Internal Rate of Return (w/o Green incentives)		0.7%	Negative	3.7%	Negative	3.8%	4.8%	Negative	12.2%	Negative	
Installed Cost \$ per kW		\$ 3,959	\$ 15,340	\$ 5,103	\$ 783,359	\$ 4,680	\$ 4,323	\$ 918,302	\$ 1,806	\$ 10,431	

	1						
						Weber-Provo Diversion	
Facility Name		Vega Dam	Washington Lake Dam	Water Hollow Diversion Dam	Weber-Provo Canal	Channel	West Canal
		Reclamation	Reclamation	Reclamation	Reclamation	Reclamation	Reclamation
Agency Analysis Barformed by		CDM	CDM	CDM	CDM	CDM	CDM
Analysis Performed by							
Project Location (State)		Colorado	Utah	Utah	Utah	Utah	Colorado
Termenterien Mellene	1.57	400		1 445	100	100	
Transmission Voltage	kV	138 2.81	115 26.42	115 6.81	138 34.88		115 5.00
T-Line Length	miles						
Fish and Wildlife Mitigation		No	No	No	No	No	No
Recreation Mitigation		No	Yes	Yes	No	No	No
Historical & Archaeological	_	No	No	No	No	No	No
Water Quality Monitoring	_	No	No	No	No	No	No
Fish Passage Required		No	No	No	No	No	No
Results							
Input Data Analysis							
Data Set	years	8	12				11
Max Head	ft	128.6	33.7	14.9	184.0	100.0	1.0
Min Head	ft	58.4	4.0	14.9	184.0	100.0	1.0
Max Flow	cfs	284	63	25			175
Min Flow	cfs	1	0	0	0	0	0
Turbine Selection Analysis							
Selected Turbine Type	T	Francis	Low Head	Low Head	Pelton	Francis	Low Head
Selected Design Head	ft	90					
Selected Design flow	cfs	84		3	32		
Generator Speed	rpm	600	600	600			
Max Head Limit	ft	112.5	36.5	18.6	202.4	125.0	1.3
Min Head Limit	ft	58.5	19.0	9.7	119.6	65.0	0.6
Max Flow Limit	cfs	84	13.0	3.7	32		
Min Flow Limit	cfs	17	3		52		24
	CIS	17	1	I	0	3	24
Power Generation Analysis							
	kW	548	E		134	473	7
Installed Capacity Plant Factor	K V V	0.36	0.38	0.68	424 0.51		0.50
		0.30	0.38	0.88	0.31	0.33	0.50
Projected Monthly Production:					1 450	1 45	
January	MWH	0		1	158		
February*	MWH	0		1	162		
March	MWH	0	1	1	227		
April	MWH	6	1	1	285		
May	MWH	195	1	1	301		
June	MWH	381	3	1	199		
July	MWH	384	3	1	109		5
August	MWH	387	3	1	21		5
September	MWH	337	2	1	10		5
October	MWH	13	1	1	51		3
November	MWH	0	1	1	164		0
December	MWH	0		1	157		
Annual production*	MWH	1,702	17	14	1,844	517	31
* For non-leap year Benefit/Cost Analysis Projected expenditure to implement project							
Total Construction Cost Annual O&M Cost		\$ 3,012,472 \$ 102,725					
	<u> </u>	\$ 103,725		\$ 63,105			
Projected Total Cost over 50 year period	<u> </u>	\$ 4,573,291	\$ 11,185,018	\$ 3,201,461	\$ 18,525,466	\$ 17,723,163	\$ 2,520,412
Projected revenue after implementation of project Power generation income for 2014 to 2060		\$ 6,162,744			\$ 6,720,761	\$ 1,883,096	
Green Energy Sellback income for 2014 to 2060		\$ 205,990	\$ 2,095	\$ 1,663	\$ 223,203	\$ 62,535	\$ 3,735
Projected Total Revenue over 50 year period (with Green							
Incentives)		\$ 2,346,838	\$ 24,310	\$ 19,101	\$ 2,534,715	\$ 710,319	\$ 42,150
Projected Total Revenue over 50 year period (w/o Green Incentives)	1						
•		\$ 2,205,437	\$ 22,872				\$ 39,585
Benefit/Cost Ratio (with Green incentives)		0.51	0.00			0.04	0.02
Benefit/Cost Ratio (w/o Green incentives)	<u> </u>	0.48	0.00				
Internal Rate of Return (with Green incentives)	I	Negative	Negative	Negative	Negative	Negative	Negative
Internal Rate of Return (w/o Green incentives)	<u> </u>	Negative	Negative	Negative	Negative	Negative	Negative
Installed Cost \$ per kW		\$ 5,499	\$ 1,655,054	\$ 970,027	\$ 33,648	\$ 79,382	\$ 240,093

This page intentionally left blank.

Appendix F Constraint Evaluation Results

This appendix presents detailed results of the regulatory constraints evaluation for the potential hydropower sites. Regulatory constraints do not include existing rights or authority to develop a site for hydropower. Table 2-3 and Chapter 5 indicate known development rights.

F.1 Regulatory Constraints

For this analysis, constraints are defined as land or water use regulations that could potentially affect development of hydropower sites. Constraints can either block development completely or add significant costs for mitigation, permitting, or further investigation of the site. This study considers the following regulatory designations as potential constraints to hydropower development.

If a site is associated with a constraint(s), mitigation costs are added to the total development costs of a project (See Chapter 3). It should be noted that this analysis does not assume that development of a site is precluded because of a potential constraint; however, this may be a very likely scenario. Further, the constraints analysis is not inclusive of all potential regulatory requirements for development of a site. Site specific analysis related to Federal, state, and local regulations must be conducted for further evaluation of site development.

National Wildlife Refuges

National Wildlife Refuge is a designation for certain protected areas of the United States managed by the United States Fish and Wildlife Service. The National Wildlife Refuge System is a system of public lands and waters set aside to conserve America's fish, wildlife and plants. The mission of the Refuge System is to manage a national network of lands and waters for the conservation, management, and where appropriate, restoration of fish, wildlife and plant resources and their habitat.

Wild and Scenic Rivers

The Wild and Scenic Rivers Act preserves selected rivers in free-flowing condition and protects those rivers and their immediate environments for the benefit and enjoyment of present and future generations. The National Wild and Scenic Rivers System is primarily administered by four Federal agencies: the Bureau of Land Management, National Park Service, U.S. Fish and Wildlife Service, and USDA Forest Service. These agencies are charged with protecting and managing the wild and scenic rivers of the United States.

National Parks

The National Park System includes all properties managed by the National Park Service. The system encompasses approximately 84.4 million acres ranging in size from 13,200,000 acres to 0.02 acres. National Parks are established only as an act of the United States Congress and have the fundamental purpose "to conserve the scenery and the natural and historic objects and the wildlife therein and to provide for the enjoyment of these while leaving them unimpaired for the enjoyment of future generations."

National Monuments

National Monuments are a protected area similar to a National Park except that the President of the United States can declare an area of the United States to be a National Monument without the approval of Congress. National Monuments afford fewer protections to wildlife than National Parks, but monuments can be part of Wilderness Areas which have an even greater degree of protection than a National Park would alone.

Wilderness Study Areas

A wilderness study area (WSA) contains undeveloped United States federal land retaining its primeval character and influence, without permanent improvements or human habitation, and managed to preserve its natural conditions. WSAs are not included in the National Wilderness Preservation System until the United States Congress passes wilderness legislation.

On Bureau of Land Management (BLM) lands, a WSA is a roadless area that has been inventoried (but not designated by Congress) and found to have wilderness characteristics as described in the Federal Land Policy and Management Act of 1976 and the Wilderness Act of 1964. BLM manages wilderness study areas under the National Landscape Conservation System to protect their value as wilderness until Congress decides whether or not to designate them as wilderness.

Critical Habitat

Under the Endangered Species Act, critical habitat is an area essential to the conservation of a listed species, though the area need not actually be occupied by the species at the time it is designated. Critical habitat must be designated for all threatened and endangered species under the Act (with certain specified exceptions). Critical habitat designations must be based on the best scientific information available, in an open public process, within specific timeframes. Before designating critical habitat, careful consideration must be given to the economic impacts, impacts on national security, and other relevant impacts of specifying any particular area as critical habitat. An area may be excluded from critical habitat if the benefits of exclusion outweigh the benefits of designation, unless excluding the area will result in the extinction of the species concerned.

Wilderness Preservation Area

Wilderness areas are areas of undeveloped Federal land that retain their primeval character and influence, without permanent improvements or human habitation, which are protected and managed to preserve their natural conditions. These areas are established as part of the National Wilderness Preservation System according to the Wilderness Act of 1964. They are owned or administered by the Bureau of Land Management, the U.S. Fish and Wildlife Service, the U.S. Department of Agriculture Forest Service, or the National Park Service.

National Forest

National Forests are federally owned areas, primarily forest and woodland, managed by the United States Forest Service. Management of these areas focuses on timber harvesting, livestock grazing, water, wildlife and recreation. Unlike National Parks and other federal lands managed by the National Park Service, commercial use of national forests is permitted.

National Historic Areas

National Historic Sites are protected areas of national historic significance owned and administered by the federal government. All historic areas in the National Park System, including National Historic Parks and Historic Sites, are listed on the National Register of Historic Places. The National Park Service is the lead Federal preservation agency for preserving the Nation's cultural heritage.

Indian Lands

Indian lands are areas with boundaries established by treaty, statute, and (or) executive or court order, recognized by the Federal Government as territory in which American Indian tribes have primary governmental authority. The Bureau of Indian Affairs is responsible for the administration and management of 55.7 million acres of land held in trust by the United States for American Indians, Indian tribes, and Alaska Natives.

Local Information for Fish and Wildlife and Fish Passage Constraints

Reclamation's regional and area offices provided additional information on potential fish and wildlife and fish passage constraints. Fish and wildlife and fish passage issues could add significant development costs to a project site. Although this analysis cannot identify specific issues for each site, it has attempted to capture if potential issues may be present at the site. If Reclamation's offices identified that fish and wildlife and fish passage were a potential constraint at the site, mitigation costs were added to the total development costs of the site. Because of the preliminary nature and geographic scope of the analysis, all sites could not be evaluated individually for fish and wildlife concerns.

F.2 Constraint Mapping

The above regulatory constraints were mapped using available data. Digital map data suitable for use with ESRI ArcMap 9.3.1 Geographic Information System (GIS) was procured from a variety of sources.

Reclamation provided a table of site coordinates identifying the latitude and longitude of the majority of the identified hydropower assessment sites; 509 of the 530 total identified hydropower assessment sites or 96 percent. These coordinate locations were imported into ArcMap and converted into a point shapefile.

The United States Department of the Interior's National Atlas of the United States found at www.nationalatlas.gov was used to obtain the following polygon and/or polyline map layers; Indian lands, National Forest, National Historic Areas, National Monument, National Park, Wild and Scenic River, Wilderness Preservation Area, Wilderness Study Area and Wildlife Refuge. The Critical Habitat polygon map layer was obtained from the U. S. Fish & Wildlife Service's Critical Habitat Portal found at http://criticalhabitat.fws.gov/.

The National Register of Historic Places point data was obtained from the National Park Service's National Register of Historic Places Google Earth layer found at http://nrhp.focus.nps.gov/natreg/docs/Download.html. This Google Earth layer was converted to features classes suitable for use within the ESRI ArcMap GIS software.

The constraints analysis was completed utilizing the coordinates of the each identified hydropower assessment site and performing an intersection function on each of the polygon map layers. If a hydropower assessment site coordinate location fell within the polygon, an "intersect", it was tabulated as a positive potential constraint.

In some instances constraints map layers were represented lines (rivers) or points (historical buildings). In those cases a proximity analysis was completed to identify whether a given assessment site was within 0.2 miles (1,056 feet) and if so, it was tabulated as a positive potential constraint.

F.3 Results Matrix

Tables F-1 through F-5 show the regulatory constraints applicable to each hydropower site in the Great Plains, Lower Colorado, Mid-Pacific, Pacific Northwest, and Upper Colorado regions, respectively. All 530 sites are included in the tables. The tables also identify sites that do not have coordinates available.

F.4 Constraint Maps

Figures F-1 through F-10 illustrates regulatory constraints relative to the hydropower assessment site locations. The regions are divided into several maps in order to show higher resolution of sites relative to constraints.

Table F-1 Great Plains Constraints

-			1						_						
Site ID	Facility Name	State	Critical Habitat	Wildlife Refuge	National Forest	National Historic Areas	National Park	Wild & Scenic River	Wilderness Preservation Area	Wildlife Refuge	Wilderness Study Area	National Monument	Indian Lands	Fish and Wildlife Constraint	Fish Passage Constraint
	Facility Name	State	U U	>	z	z	z	5	>	>	5	z	7	ш	ш
GP-1	Almena Diversion Dam	Montana													
GP-2	Altus Dam	Kansas													
GP-3		Oklahoma											V		
GP-4	Anchor Dam	Wyoming											Х		
GP-5	Angostura Dam Anita Dam	South Dakota													
GP-6	Arbuckle Dam	Montana													
GP-7 GP-8	Barretts Diversion Dam	Oklahoma													
	Bartley Diversion Dam	Montana													
GP-9	Belle Fourche Dam	Nebraska													
GP-10	Belle Fourche Diversion Dam	South Dakota				V									
GP-11 GP-12	Bonny Dam	South Dakota Colorado				Х									
GP-12 GP-13	Box Butte Dam	Nebraska													
GP-13 GP-14	Bretch Diversion Canal	Oklahoma													
GP-14 GP-15	Bull Lake Dam												Х		
GP-15 GP-16	Cambridge Diversion Dam	Wyoming Nebraska											^		
GP-17	Carter Creek Diversion Dam	Colorado							Х						
GP-18	Carter Lake Dam No. 1	Colorado							~						
GP-19	Cedar Bluff Dam	Kansas													
GP-20	Chapman Diversion Dam	Colorado			Х										
GP-21	Cheney Dam	Kansas			~										
GP-22	Choke Canyon Dam	Texas													
GP-23	Clark Canyon Dam	Montana													
GP-24	Corbett Diversion Dam	Wyoming													
GP-25	Culbertson Diversion Dam	Nebraska													
GP-26	Davis Creek Dam	Nebraska													
GP-27	Deaver Dam	Wyoming													
GP-28	Deerfield Dam	South Dakota													
GP-29	Dickinson Dam	North Dakota													
GP-30	Dixon Canyon Dam	Colorado													
GP-31	Dodson Diversion Dam	Montana											Х		
GP-32	Dry Spotted Tail Diversion Dam	Nebraska													
GP-33	Dunlap Diversion Dam	Nebraska											_		
GP-34	East Portal Diversion Dam	Colorado													
GP-35	Enders Dam	Nebraska													
GP-36	Fort Cobb Dam	Oklahoma													
GP-37	Fort Shaw Diversion Dam	Montana													
GP-38	Foss Dam	Oklahoma													
GP-39	Fresno Dam	Montana													
GP-40	Fryingpan Diversion Dam	Colorado							Х						
GP-41	Gibson Dam	Montana													

Table F-1 Great Plains Constraints

						1		-	_					1	
Site ID	Facility Name	State	Critical Habitat	Wildlife Refuge	National Forest	National Historic Areas	National Park	Wild & Scenic River	Wilderness Preservation Area	Wildlife Refuge	Wilderness Study Area	National Monument	Indian Lands	Fish and Wildlife Constraint	Fish Passage Constraint
GP-42	Glen Elder Dam	Kansas													
GP-43	Granby Dam	Colorado												Х	
GP-44	Granby Dikes 1-4	Colorado													
GP-45	Granite Creek Diversion Dam	Colorado							Х						
GP-46	Gray Reef Dam	Wyoming													Х
GP-47	Canal Drop	Montana													
GP-48	Halfmoon Creek Diversion Dam	Colorado													
GP-49	Hanover Diversion Dam	Wyoming													
GP-50	Heart Butte Dam	North Dakota													
GP-51	Helena Valley Dam	Montana													
GP-52	Helena Valley Pumping Plant	Montana													
GP-53	Horse Creek Diversion Dam	Wyoming													
GP-54	Horsetooth Dam	Colorado													
GP-55	Hunter Creek Diversion Dam	Colorado							Х						
GP-56	Huntley Diversion Dam	Montana							~						
GP-57	Ivanhoe Diversion Dam	Colorado			Х										
GP-58	James Diversion Dam	South Dakota													
GP-59	Jamestown Dam	North Dakota													
GP-60	Drop	Montana													
GP-61	Kent Diversion Dam	Nebraska													
GP-62	Keyhole Dam	Wyoming													
GP-63	Kirwin Dam	Kansas													
GP-64	Drop	Montana													
GP-65	Lake Alice Lower 1-1/2 Dam	Nebraska		Х						Х					
GP-66	Lake Alice No. 1 Dam	Nebraska		Х						Х					
GP-67	Lake Alice No. 2 Dam	Nebraska													
GP-68	Lake Sherburne Dam	Montana											Х		
GP-69	Lily Pad Diversion Dam	Colorado			Х										
GP-70	Little Hell Creek Diversion Dam	Colorado			Х										
GP-71	Lovewell Dam	Kansas													
GP-72	Lower Turnbull Drop Structure	Montana													
GP-73	Lower Yellowstone Diversion Dam	Montana												Х	Х
GP-74	Mary Taylor Drop Structure	Montana													
GP-75	Medicine Creek Dam	Nebraska													
GP-76	Merritt Dam	Nebraska													
GP-77	Merritt Dam	Nebraska													
GP-78	Dam	Colorado			Х										
GP-79	Midway Creek Diversion Dam	Colorado							Х						
GP-80	Lower Drops Combined	Montana													
GP-81	Minatare Dam	Nebraska		Х						Х					
GP-82	Mormon Creek Diversion Dam	Colorado			Х										

Table F-1 Great Plains Constraints

Site ID Eacility Name State National Forest National Forest National Park National Park National Park National Park National Park Presention Areas Presention Areas Presention Areas Presention Areas Presention Areas Presention Area Park Pres	Wildlife Refuge	Study Area	ent		onstraint	int
Site ID Facility Name State 5 2 2 2 2 2 2 3	Wildlife	Wilderness Study Area	National Monument	Indian Lands	Fish and Wildlife Constraint	Fish Passage Constraint
GP-83 Mountain Park Dam Oklahoma	_		<u> </u>			
GP-84 Nelson Dikes Montana						
GP-85 Nelson Dikes Montana						
GP-86 No Name Creek Diversion Dam Colorado X						
GP-87 Norman Dam Oklahoma						
GP-88 Dam Colorado X		-				
GP-89 North Fork Diversion Dam Colorado X						
GP-90 North Poudre Diversion Dam Colorado X X X						
GP-91 Norton Dam Kansas						
GP-92 Olympus Dam Colorado						
GP-93 Pactola Dam South Dakota X						
GP-94 Paradise Diversion Dam Montana						
GP-95 Pathfinder Dam Wyoming X						Х
GP-96 Pathfinder Dike Wyoming X						~
GP-97 Pilot Butte Dam Wyoming				Х		
GP-98 Pishkun Dike - No. 4 Montana				~		
GP-99 Pueblo Dam Colorado					Х	
GP-100 Ralston Dam Wyoming					~	
GP-101 Rattlesnake Dam Colorado						
GP-102 Red Willow Dam Nebraska						
GP-103 Saint Mary Diversion Dam Montana				х		
GP-104 Sanford Dam Texas				~		
GP-105 Satanka Dike Colorado						
GP-106 Sawyer Creek Diversion Dam Colorado X						
GP-107 Shadehill Dam South Dakota						
GP-108 Shadow Mountain Dam Colorado						
GP-109 Soldier Canyon Dam Colorado						
GP-110 Dam Colorado X			1			
GP-111 South Fork Diversion Dam Colorado X						
GP-112 South Platte Supply Canal Diverion Dam Colorado						
GP-113 Spring Canyon Dam Colorado		1	1	1		
GP-114 St. Mary Canal - Drop 1 Montana		1	1	Х		
GP-115 St. Mary Canal - Drop 2 Montana		1		Х		
GP-116 St. Mary Canal - Drop 3 Montana		1		Х		
GP-117 St. Mary Canal - Drop 4 Montana		1		Х		
GP-118 St. Mary Canal - Drop 5 Montana		1		Х		
GP-119 St. Vrain Canal Colorado * * * * * * * *	*	*	*	*		
GP-120 Sun River Diversion Dam Montana X						
GP-121 Superior-Courtland Diversion Dam Nebraska						
GP-122 Trenton Dam Nebraska						
GP-123 Trenton Dam Nebraska						

Table F-1 Great Plains Constraints

Site ID	Facility Name	State	Critical Habitat	Wildlife Refuge	National Forest	National Historic Areas	National Park	Wild & Scenic River	Wilderness Preservation Area	Wildlife Refuge	Wilderness Study Area	National Monument	Indian Lands	Fish and Wildlife Constraint	Fish Passage Constraint
GP-124	Tub Springs Creek Diversion Dam	Nebraska													
GP-125	Twin Buttes Dam	Texas													
GP-126	Twin Lakes Dam (USBR)	Colorado												Х	
GP-127	Upper Turnbull Drop Structure	Montana													
GP-128	Vandalia Diversion Dam	Montana													
GP-129	Virginia Smith Dam	Nebraska													
GP-130	Webster Dam	Kansas													
GP-131	Whalen Diversion Dam	Wyoming													
GP-132	Willow Creek Dam	Colorado													
GP-133	Willow Creek Dam	Montana													
GP-134	Willow Creek Forebay Diversion Dam	Colorado													
GP-135	Willwood Canal	Wyoming													Х
GP-136	Willwood Diversion Dam	Wyoming													Х
GP-137	Wind River Diversion Dam	Wyoming				Х							Х		
GP-138	Drop	Montana													
GP-139	Woodston Diversion Dam	Kansas													
GP-140	Wyoming Canal - Sta 1016	Wyoming													
GP-141	Wyoming Canal - Sta 1490	Wyoming													
GP-142	Wyoming Canal - Sta 1520	Wyoming											Х		
GP-143	Wyoming Canal - Sta 1626	Wyoming													
GP-144	Wyoming Canal - Sta 1972	Wyoming													
GP-145	Wyoming Canal - Sta 997	Wyoming													
GP-146	Yellowtail Afterbay Dam	Montana													

Total

0 3 11 3 0 1 9 3 0 0 13 4 5

MISSING SITE COORDINATE

Table F-2
Lower Colorado Constraints

Site ID	Facility Name	State	Critical Habitat	Wildlife Refuge	National Forest	National Historic Areas	National Park	Wild & Scenic River	Wilderness Preservation Area	Wildlife Refuge	Wilderness Study Area	National Monument	Indian Lands	Fish and Wildlife Constraint	Fish Passage Constraint
LC-1	Agua Fria River Siphon	Arizona													
LC-2	Agua Fria Tunnel	Arizona													
LC-3	All American Canal	California													
LC-4	Headworks	California	Х												
LC-5	Arizona Canal	Arizona													
LC-6	Bartlett Dam	Arizona			Х									Х	
LC-7	Buckskin Mountain Tunnel	Arizona													
LC-8	Burnt Mountain Tunnel	Arizona													
LC-9	Centennial Wash Siphon	Arizona													
LC-10	Coachella Canel	California													
LC-11	Consolidated Canal	Arizona													
LC-12	Cross Cut Canal	Arizona													
LC-13	Cunningham Wash Siphon	Arizona													
LC-14	Eastern Canal	Arizona													
LC-15	Headworks	Arizona													
LC-16	Gila River Siphon	Arizona													
LC-17	Grand Canal	Arizona													
LC-18	Granite Reef Diversion Dam	Arizona-California													
LC-19	Hassayampa River Siphon	Arizona													
LC-20	Horseshoe Dam	Arizona			Х									Х	
LC-21	Imperial Dam	Arizona-California	Х												
LC-22	Interstate Highway Siphon	Arizona													
LC-23	Jackrabbit Wash Siphon	Arizona													
LC-24	Laguna Dam	Arizona-California											Х		
LC-25	New River Siphon	Arizona													
LC-26	Palo Verde Diversion Dam	Arizona-California	Х												
LC-27	Reach 11 Dike	Arizona													
LC-28	Salt River Siphon Blowoff	Arizona											Х		
LC-29	Tempe Canal	Arizona													
LC-30	Western Canal	Arizona													

MISSING SITE COORDINATE

Table F-3 Mid-Pacific Constraints

		Iviid-Paci			รแล	IIIIS) 								
Site ID	Facility Name	State	Critical Habitat	Wildlife Refuge	National Forest	National Historic Areas	National Park	Wild & Scenic River	Wilderness Preservation Area	Wildlife Refuge	Wilderness Study Area	National Monument	Indian Lands	Fish and Wildlife Constraint	Fish Passage Constraint
MP-1	Anderson-Rose Dam	Oregon													
MP-2	Boca Dam	California			Х	Х									
MP-3	Bradbury Dam	California													
MP-4	Buckhorn Dam (Reclamation)	California													
MP-5	Camp Creek Dam	California													
MP-6	Carpenteria	California													
MP-7	Carson River Dam	Nevada													
MP-8	Casitas Dam	California													
MP-9	Clear Lake Dam	California			Х										
MP-10	Contra Loma Dam	California													
MP-11	Derby Dam	Nevada				Х									
MP-12	Dressler Dam	Nevada	*	*	*	*	*	*	*	*	*	*	*		
MP-13	East Park Dam	California													
MP-14	Funks Dam	California													
MP-15	Gerber Dam	Oregon													
MP-16	Glen Anne Dam	California			Х										
MP-17	John Franchi Dam	California	Х												
MP-18	Lake Tahoe Dam	California			Х	Х								Х	Х
MP-19	Lauro Dam	California													
MP-20	Little Panoche Detention Dam	California													
MP-21	Los Banos Creek Detention Dam	California													
MP-22	Lost River Diversion Dam	Oregon													
MP-23	Malone Diversion Dam	Oregon													
MP-24	Marble Bluff Dam	Nevada											Х		
MP-25	Martinez Dam	California													
MP-26	Miller Dam	Oregon													
MP-27	Mormon Island Auxiliary Dike	California													
MP-28	Northside Dam	California	Х												
MP-29	Ortega Dam	California													
MP-30	Prosser Creek Dam	California			Х										
MP-31	Putah Creek Dam	California													
MP-32	Putah Diversion Dam	California												Х	
MP-33	Rainbow Dam	California			Х										
MP-34	Red Bluff Dam	California		Х						Х					
MP-35	Robles Dam	California													

Site ID	Facility Name	State	Critical Habitat	Wildlife Refuge	National Forest	National Historic Areas	National Park	Wild & Scenic River	Wilderness Preservation Area	Wildlife Refuge	Wilderness Study Area	National Monument	Indian Lands	Fish and Wildlife Constraint	Fish Passage Constraint
MP-36	Rye Patch Dam	Nevada													
MP-37	San Justo Dam	California													
MP-38	Sheckler Dam	Nevada													
MP-39	Sly Park Dam	California													
MP-40	Spring Creek Debris Dam	California													
MP-41	Sugar Pine Dam	California													
MP-42	Terminal Dam	California													
MP-43	Twitchell Dam	California													
MP-44	Upper Slaven Dam	Nevada													

Total

Table F-3 Mid-Pacific Constraints

MISSING SITE COORDINATE

Table F-4
Pacific Northwest Constraints

-									_						
Site ID	Facility Name	State	Critical Habitat	Wildlife Refuge	National Forest	National Historic Areas	National Park	Wild & Scenic River	Wilderness Preservation Area	Wildlife Refuge	Wilderness Study Area	National Monument	Indian Lands	Fish and Wildlife Constraint	Fish Passage Constraint
PN-1	Agate Dam	Oregon				_						_	_	_	
PN-2	Agency Valley	Oregon													
PN-3	Antelope Creek	Oregon	Х												
PN-4	Arnold Dam	Oregon						Х							
PN-5	Arrowrock Dam	Idaho				Х									
PN-6	Arthur R. Bowman Dam	Oregon						Х							
PN-7	Ashland Lateral	Oregon													
PN-8	Beaver Dam Creek	Oregon	1		Х										
PN-9	Bully Creek	Oregon													
PN-10	Bumping Lake	Washington	Х						Х						
PN-11	Cascade Creek	Idaho													
PN-12	Cle Elum Dam	Washington													
PN-13	Clear Creek	Washington			Х										
PN-14	Col W.W. No 4	Washington	*	*	*	*	*	*	*	*	*		*		
PN-15	Cold Springs	Oregon		Х						Х					
PN-16	Conconully	Washington				Х									
PN-17	Conde Creek	Oregon													
PN-18	Cowiche	Washington													
PN-19	Crab Creek Lateral #4	Washington													
PN-20	Crane Prairie	Oregon			Х										
PN-21	Cross Cut	Idaho													
PN-22	Daley Creek	Oregon			Х										
PN-23	Dead Indian	Oregon													
PN-24	Deadwood Dam	Idaho			Х										
PN-25	Deer Flat East Dike	Idaho		Х						Х					
PN-26	Deer Flat Middle	Idaho		Х						Х					
PN-27	Deer Flat North Lower	Idaho		Х						Х					
PN-28	Deer Flat Upper	Idaho		Х						Х					
PN-29	Diversion Canal Headworks	Oregon										_			
PN-30	Dry Falls - Main Canal Headworks	Washington													
PN-31	Easton Diversion Dam	Washington													
PN-32	Eltopia Branch Canal	Washington													
PN-33	Eltopia Branch Canal 4.6	Washington													
PN-34	Emigrant	Oregon													
PN-35	Esquatzel Canal	Washington													
PN-36	Feed Canal	Oregon													
PN-37	Fish Lake	Oregon	Х		Х										
PN-38	Fourmile Lake	Oregon			Х										
PN-39	French Canyon	Washington													
PN-40	Frenchtown	Montana													

Table F-4
Pacific Northwest Constraints

Site ID	Facility Name	State	Critical Habitat	Wildlife Refuge	National Forest	National Historic Areas	National Park	Wild & Scenic River	Wilderness Preservation Area	Wildlife Refuge	Wilderness Study Area	National Monument	Indian Lands	Fish and Wildlife Constraint	Fish Passage Constraint
PN-41	Golden Gate Canal	Idaho	*	*	*	*	*	*	*	*	*		*		
PN-42	Grassy Lake	Wyoming													
PN-43	Harper Dam	Oregon													
PN-44	Haystack	Oregon													
PN-45	Howard Prairie Dam	Oregon													
PN-46	Hubbard Dam	Idaho													
PN-47	Hyatt Dam	Oregon													
PN-48	Kachess Dam	Washington			Х										
PN-49	Keechelus Dam	Washington			Х										
PN-50	Keene Creek	Oregon													
PN-51	Little Beaver Creek	Oregon													
PN-52	Little Wood River Dam	Idaho													
PN-53	Lytle Creek	Oregon													
PN-54	Main Canal No. 10	Idaho									Х				
PN-55	Main Canal No. 6	Idaho													
PN-56	Mann Creek	Idaho													
PN-57	Mason Dam	Oregon													
PN-58	Maxwell Dam	Oregon													
PN-59	McKay Dam	Oregon													
PN-60	Mile 28 - on Milner Gooding Canal	Idaho													
PN-61	Mora Canal Drop	Idaho													
PN-62	North Canal Diversion Dam	Oregon													
PN-63	North Unit Main Canal	Oregon	*	*	*	*	*	*	*	*	*		*		
PN-64	Oak Street	Oregon				Х									
PN-65	Ochoco Dam	Oregon													
PN-66	Orchard Avenue	Washington	*	*	*	*	*	*	*	*	*		*		
PN-67	Owyhee Tunnel No. 1	Oregon													
PN-68	PEC Mile 26.3	Washington	*	*	*	*	*	*	*	*	*		*		
PN-69	Phoenix Canal	Oregon													_
PN-70	Pilot Butte Canal	Oregon	*	*	*	*	*	*	*	*	*		*		
PN-71	Pinto Dam	Washington													
PN-72	Potholes Canal Headworks	Washington													
PN-73	Potholes East Canal - PEC 66.0	Washington													
PN-74	Potholes East Canal 66.0	Washington													
PN-75	Prosser Dam	Washington													
PN-76	Quincy Chute Hydroelectric	Washington													
PN-77	RB4C W. W. Hwy26 Culvert	Washington													
PN-78	Reservoir "A"	Idaho											Х		
PN-79	Ringold W. W.	Washington													
PN-80	Ririe Dam	Idaho	1												

Table F-4
Pacific Northwest Constraints

PN-82 Roi PN-83 Rui PN-84 Sai PN-85 Sai PN-86 Sai PN-87 Sca PN-88 Sca PN-89 Sca PN-90 Sca PN-91 Sca	oza Diversion Dam ussel D Smith addle Mountain W. W. almon Creek	Montana Washington Washington Washington Oregon Washington Oregon			X			 		 	
PN-83 Rui PN-84 Sar PN-85 Sal PN-86 Sal PN-87 Scr PN-88 Scr PN-89 Sor PN-90 Sor PN-91 Sor	ussel D Smith addle Mountain W. W. almon Creek almon Lake coggins Dam cootney Wasteway oda Creek	Washington Washington Washington Oregon Washington Oregon									
PN-84 Sau PN-85 Sai PN-86 Sai PN-87 Sco PN-88 Sco PN-89 Sco PN-90 Sco PN-91 Scol PN-92 Scol	addle Mountain W. W. almon Creek almon Lake coggins Dam cootney Wasteway oda Creek	Washington Washington Washington Oregon Washington Oregon									
PN-85 Sal PN-86 Sal PN-87 Sca PN-88 Sca PN-89 Sca PN-90 Sca PN-91 Sca PN-92 Sca	almon Creek almon Lake coggins Dam cootney Wasteway oda Creek	Washington Washington Oregon Washington Oregon				 					
PN-86 Sal PN-87 Sca PN-88 Sca PN-89 Sca PN-89 Sca PN-90 Sca PN-91 Sca PN-92 Sca	almon Lake coggins Dam cootney Wasteway oda Creek	Washington Oregon Washington Oregon				 			_		
PN-87 Sca PN-88 Sca PN-89 Sca PN-90 Sca PN-91 Sca PN-92 Sca	coggins Dam cootney Wasteway oda Creek	Oregon Washington Oregon									
PN-88 Sci PN-89 Sci PN-90 Sci PN-91 Sci PN-92 Sci	cootney Wasteway oda Creek	Washington Oregon									
PN-89 Souther PN-90 Souther PN-91 Souther PN-92 Souther	oda Creek	Oregon									
PN-90 Soo PN-91 Sol PN-92 Soo											
PN-91 Sol PN-92 Sol	oda Lake Dike										
PN-92 So		Washington		Х				Х			
	oldier's Meadow	Idaho									
PN-93 Spe	outh Fork Little Butte Creek	Oregon	Х		Х						
	ectacle Lake Dike	Washington									
PN-94 Su	Immer Falls on Main Canal	Washington									
PN-95 Su	innyside Dam	Washington								Х	
PN-96 Sw	veetwater Canal	Idaho									
PN-97 Thi	ief Valley Dam	Oregon					Х				
PN-98 Thr	ree Mile Falls	Oregon									
PN-99 Tie	eton Diversion	Washington	Х								
PN-100 Uni	nity Dam	Oregon									
PN-101 Wa	arm Springs Dam	Oregon									
PN-102 Wa	asco Dam	Oregon			Х						
PN-103 We	ebb Creek	Idaho								Х	
PN-104 Wid	ickiup Dam	Oregon			Х						
PN-105 Wil	ild Horse - BIA	Nevada									

MISSING SITE COORDINATE

Table F-5Upper Colorado Constraints

		lorado Con	stra	ints	5								-		
Site ID	Facility Name	State	Critical Habitat	Wildlife Refuge	National Forest	National Historic Areas	National Park	Wild & Scenic River	Wilderness Preservation Area	Wildlife Refuge	Wilderness Study Area	National Monument	Indian Lands	Fish and Wildlife Constraint	Fish Passage Constraint
UC-1	Alpine Tunnel	Utah			Х										
UC-2	Alpine-Draper Tunnel	Utah													
UC-3	American Diversion Dam	New Mexico				Х									
UC-4	Angostura Diversion	New Mexico	Х										Х		
UC-5	Arthur V. Watkins Dam	Utah													
UC-6	Avalon Dam	New Mexico													
UC-7	Station 1565+00	New Mexico			Х										
UC-8	Station 1702+75	New Mexico			Х										
UC-9	Station 1831+17	New Mexico			Х										
UC-10	Outlet	New Mexico			Х										
UC-11	Azotea Tunnel	New Mexico			Х										
UC-12	Beck's Feeder Canal	Utah			Х										
UC-13	Big Sandy Dam	Wyoming													
UC-14	Blanco diversion Dam	New Mexico			Х										
UC-15	Blanco Tunnel	New Mexico							Х						
UC-16	Brantley Dam	New Mexico													
UC-17	Broadhead Diversion Dam	Utah			Х										
UC-18	Brough's Fork Feeder Canal	Utah			Х										
UC-19	Caballo Dam	New Mexico												Х	
UC-20	Cedar Creek Feeder Canal	Utah			Х										
UC-21	Cottonwood Creek/Huntington Canal	Utah													
UC-22	Crawford Dam	Colorado													
UC-23	Currant Creek Dam	Utah			Х										
UC-24	Currant Tunnel	Utah			Х										<u> </u>
UC-25	Dam No. 13	New Mexico													
UC-26	Dam No. 2	New Mexico													
UC-27	Davis Aqueduct	Utah			Х										
UC-28	Dolores Tunnel	Colorado									Х				
UC-29	Docs Diversion Dam	Utah			Х										
UC-30	Duchesne Diversion Dam	Utah			Х										
UC-31		Utah			Х										
UC-32	Duchense Feeder Canal	Utah													
UC-33	East Canal	Utah	┣──												
UC-34	East Canal	Colorado													
UC-35	East Canal Diversion Dam	Colorado	<u> </u>									1			
UC-36	East Canyon Dam	Utah	-												
UC-37	East Fork Diversion Dam	Colorado			Х					$\left - \right $				$\left - \right $	
UC-38	Eden Canal	Wyoming													
UC-39	Eden Dam	Wyoming Utah			х										
UC-40 UC-41	Ephraim Tunnel				X										
UC-41 UC-42	Farmington Creek Stream Inlet Fire Mountain Diversion Dam	Utah Colorado	-		^										
UC-42 UC-43	Florida Farmers Diversion Dam	Colorado	*	*	*	*	*	*	*	*	*		*		
00-43		Colorado										F-	ô		ļ

Table F-5Upper Colorado Constraints

UC-44Fort Summer Diversion DamNew MexicoIII <thi< th="">II<thi< th="" th<=""><th></th><th>Upper Co</th><th><u>olorado Con</u></th><th>stra</th><th>Ints</th><th>5</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></thi<></thi<>		Upper Co	<u>olorado Con</u>	stra	Ints	5										
UC-46 Fort Thomburgh Diversion Dam Utah I	Site ID			Critical Habitat	Wildlife Refuge	National Forest	National Historic Areas	National Park	Wild & Scenic River	Wilderness Preservation Area	Wildlife Refuge	Wilderness Study Area	National Monument	Indian Lands	Fish and Wildlife Constraint	Fish Passage Constraint
UC-46 Frugnowers Dam Colorado I <td>-</td> <td></td>	-															
UC-47 Gamet Diversion Dam Colorado I <				<u> </u>												
UC-48 Gateway Tunnel Ulah Image: Section of the se																
UG-49 Grand Valley Diversion Dam Colorado X																
UC-80 Great Cut Dike Colorado Image: Section 2 and Sectin 2 and Sectin 2 and Section 2 and Sectin 2 and Section 2 and Sect						Х										
UC-51 Gunnison Diversion Dam Colorado I							Х									
UC-52 Gurnison Tunnel Colorado I				<u> </u>		Х										
UC-53 Hades Creek Diversion Dam Utah I X I				<u> </u>											Х	
UC-54 Hades Tunnel Utah I N																
UC-56 Haights Creek Stream Inlet Utah ·																
UC-56Hammond Diversion DamNew Mexico'''<																
New MaxID New MaxID																
UC-58Highine CanalUtahIII				*	*	*	*	*	*	*	*	*		*		
UC-59 Huntington North Dam Utah Image: Section of the open of															Х	
UC-60 Huntington North Feeder Canal Utah Image: Constraint of the constraint of																
UC-61Huntington North Service CanalUtahIII <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																
UC-62 Hyrum Dam Utah I																
UC-63Hyrum Feeder CanalUtahII																
UC-64Hyrum-Mendon CanalUtahII																
UC-65Indian Creek Crossing Div. DamUtah··· <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																
UC-66Indian Creek DikeUtahImage: Marce Ma				*	*	*	*	*	*	*	*	*		*		
UC-67Inlet CanalColoradoII <th< td=""><td></td><td></td><td></td><td>*</td><td>*</td><td>*</td><td>*</td><td>*</td><td>*</td><td>*</td><td>*</td><td>*</td><td></td><td>*</td><td></td><td></td></th<>				*	*	*	*	*	*	*	*	*		*		
UC-68Ironstone CanalColoradoImage: ColoradoImage:				1												
UC-69Ironstone Diversion DamColoradoImage: ColoradoImage: Colorado <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>																
UC-71Jackson Gulch DamColoradoImage: ColoradoImage:	UC-69	Ironstone Diversion Dam														
UC-72Joes Valley DamUtahXXXXXXXUC-73Jordanelle DamUtahIII	UC-70	Isleta Diversion Dam	New Mexico											Х		
UC-73Jordanelle DamUtahII	UC-71	Jackson Gulch Dam	Colorado													
UC-74Knight Diversion DamUtahII <td>UC-72</td> <td>Joes Valley Dam</td> <td>Utah</td> <td></td> <td></td> <td>Х</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Х</td> <td></td>	UC-72	Joes Valley Dam	Utah			Х									Х	
UC-75Layout Creek Diversion DamUtahXXIII <t< td=""><td>UC-73</td><td>Jordanelle Dam</td><td>Utah</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	UC-73	Jordanelle Dam	Utah													
UC-76Layout Creek TunnelUtahXXII <td>UC-74</td> <td>Knight Diversion Dam</td> <td>Utah</td> <td></td>	UC-74	Knight Diversion Dam	Utah													
UC-77Layton CanalUtahImage: Sector AmplitudeImage: Sector Amplitude <t< td=""><td>UC-75</td><td>Layout Creek Diversion Dam</td><td>Utah</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	UC-75	Layout Creek Diversion Dam	Utah													
UC-78Leasburg Diversion DamNew MexicoXXIIIIIUC-79Leon Creek Diversion DamColoradoII <tdi< t<="" td=""><td>UC-76</td><td>Layout Creek Tunnel</td><td>Utah</td><td></td><td></td><td>Х</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tdi<>	UC-76	Layout Creek Tunnel	Utah			Х										
UC-79Leon Creek Diversion DamColoradoXII		· · ·		<u> </u>												
UC-80Little Navajo River SiphonNew MexicoXXIIIIIUC-81Little Oso Diversion DamColoradoXIII <td< td=""><td></td><td></td><td></td><td>_</td><td> </td><td> </td><td>Х</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>				_			Х									
UC-81Little Oso Diversion DamColoradoXXIIIIIUC-82Little Sandy Diversion DamWyomingVVV<				<u> </u>			\square				\square					
UC-82Little Sandy Diversion DamWyomingImage: Constraint of the systemImage:				<u> </u>												
UC-83Little Sandy Feeder CanalWyomingIII						Х										
UC-84Lost Creek DamUtahII																
UC-85 Lost Lake Dam Utah X Image: Colorado Image: Colorado UC-86 Loutzenheizer Canal Colorado Image: Colorado Image: Colorado Image: Colorado																
UC-86 Loutzenheizer Canal Colorado						v										
				+		~										
	00-00			1	<u> </u>	<u> </u>							F-	7		

Table F-5Upper Colorado Constraints

r	Upper C	<u>Colorado Con</u>	sua	ints	\$ 										
Site ID	Facility Name	State	Critical Habitat	Wildlife Refuge	National Forest	National Historic Areas	National Park	Wild & Scenic River	Wilderness Preservation Area	Wildlife Refuge	Wilderness Study Area	National Monument	Indian Lands	Fish and Wildlife Constraint	Fish Passage Constraint
UC-87	Loutzenheizer Diversion Dam	Colorado													
UC-88	Lucero Dike	New Mexico	*	*	*	*	*	*	*	*	*		*		
UC-89	M&D Canal-Shavano Falls	Colorado													
UC-90	Madera Diversion Dam	Texas													
UC-91	Main Canal	Utah													
UC-92	Means Canal	Wyoming													
UC-93	Meeks Cabin Dam	Wyoming													
UC-94	Mesilla Diversion Dam	New Mexico													
UC-95	Middle Fork Kays Creek Stream Inlet	Utah			х										
UC-96	Midview Dam	Utah													
UC-97	Mink Creek Canal	Idaho													
UC-98	Montrose and Delta Canal	Colorado													
UC-99	Montrose and Delta Div. Dam	Colorado													
UC-100	Moon Lake Dam	Utah			х										
UC-101	Murdock Diversion Dam	Utah			х										
UC-102	Nambe Falls Dam	New Mexico											Х		
UC-103	Navajo Dam Diversion Works	New Mexico													
UC-104	Newton Dam	Utah													
UC-105	Ogden Brigham Canal	Utah													
UC-106	Ogden Valley Canal	Utah													
UC-107	Ogden Valley Diversion Dam	Utah													
UC-108	Ogden-Brigham Canal	Utah													
UC-109	Olmstead Diversion Dam	Utah			Х										
UC-110	Olmsted Tunnel	Utah			Х										
UC-111	Open Channel #1	Utah			Х										
UC-112	Open Channel #2	Utah			Х										
UC-113	Oso Diversion Dam	Colorado													
UC-114	Oso Feeder Conduit	New Mexico			Х										
UC-115	Oso Tunnel	New Mexico			Х										
UC-116	Outlet Canal	Colorado													
UC-117	Paonia Dam	Colorado												Х	
UC-118	Park Creek Diversion Dam	Colorado													
UC-119	Percha Arroyo Diversion Dam	New Mexico													
UC-120	Percha Diversion Dam	New Mexico	<u> </u>			Х									
UC-121	Picacho North Dam	New Mexico	*	*	*	*	*	*	*	*	*		*		
UC-122	Picacho South Dam	New Mexico	*	*	*	*	*	*	*	*	*		*		
UC-123	Pineview Dam	Utah			Х										
UC-124	Platoro Dam	Colorado	<u> </u>												
UC-125	Provo Reservoir Canal	Utah			Х										
UC-126	Red Fleet Dam	Utah													
UC-127	Rhodes Diversion Dam	Utah	<u> </u>		Х										
UC-128	Rhodes Flow Control Structure	Utah	<u> </u>		Х										
UC-129	Rhodes Tunnel	Utah			Х							F-	8		
												F-1	0		

Table F-5Upper Colorado Constraints

r	Upper Co	lorado Con	<u>511a</u>	Inte		-				-					
Site ID	Facility Name	State	Critical Habitat	Wildlife Refuge	National Forest	National Historic Areas	National Park	Wild & Scenic River	Wilderness Preservation Area	Wildlife Refuge	Wilderness Study Area	National Monument	Indian Lands	Fish and Wildlife Constraint	Fish Passage Constraint
UC-130	Ricks Creek Stream Inlet	Utah			Х										
UC-131	Ridgway Dam	Colorado												Х	
UC-132	Rifle Gap Dam	Colorado												Х	
UC-133	Riverside Diversion Dam	Texas													
UC-134	S.Ogden Highline Canal Div. Dam	Utah			Х										
UC-135	San Acacia Diversion Dam	New Mexico	Х	Х						Х					
UC-136	Scofield Dam	Utah													
UC-137	Selig Canal	Colorado													
UC-138	Selig Diversion Dam	Colorado													
UC-139	Sheppard Creek Stream Inlet	Utah			Х										
UC-140	Silver Jack Dam	Colorado													
UC-141	Sixth Water Flow Control	Utah			Х									Х	
UC-142	Slaterville Diversion Dam	Utah													
UC-143	Smith Fork Diversion Dam	Colorado													
UC-144	Soldier Creek Dam	Utah												Х	
UC-145	South Canal Tunnels	Colorado	*	*	*	*	*	*	*	*	*		*		
UC-146	South Canal, Sta 19+ 10 "Site #1"	Colorado													
UC-147	South Canal, Sta. 181+10, "Site #4"	Colorado													
UC-148	South Canal, Sta. 472+00, "Site #5"	Colorado													
UC-149	South Canal, Sta. 72+50, Site #2"	Colorado													
UC-150	South Canal, Sta.106+65, "Site #3"	Colorado													
UC-151	South Feeder Canal	Utah			Х										
UC-152	South Fork Kays Creek Stream Inlet	Utah			Х										
UC-153	Southside Canal	Colorado													
UC-154	Southside Canal, Sta 171+ 90 thru 200+ 67 (2 canal drops)	Colorado													
UC-155	Southside Canal, Sta 349+ 05 thru 375+ 42 (3 canal drops)	Colorado													
UC-156	Southside Canal, Station 1245 + 56	Colorado													
UC-157	Southside Canal, Station 902 + 28	Colorado													
UC-158	Spanish Fork Diversion Dam	Utah													
UC-159	Spanish Fork Flow Control Structure	Utah												Х	
UC-160	Spring City Tunnel	Utah			Х										
UC-161	Staight Creek Stream Inlet	Utah	*	*	*	*	*	*	*	*	*		*		
UC-162	Starvation Dam	Utah	<u> </u>	<u> </u>										Х	
UC-163	Starvation Feeder Conduit Tunnel	Utah	<u> </u>]
UC-164	Stateline Dam	Utah	<u> </u>		Х										
UC-165	Station Creek Tunnel	Utah													
UC-166	Steinaker Dam	Utah	<u> </u>												
UC-167	Steinaker Feeder Canal	Utah	<u> </u>												
UC-168	Steinaker Service Canal	Utah													
UC-169	Stillwater Tunnel	Utah	<u> </u>		Х										
UC-170	Stoddard Diversion Dam	Utah	<u> </u>												
UC-171	Stone Creek Stream Inlet	Utah		<u> </u>	Х										
UC-172	Strawberry Tunnel Turnout	Utah	<u> </u>		Х							F-	9		
												1 -			

Table F-5
Upper Colorado Constraints

Site ID	Facility Name	State	Critical Habitat	Wildlife Refuge	National Forest	National Historic Areas	National Park	Wild & Scenic River	Wilderness Preservation Area	Wildlife Refuge	Wilderness Study Area	National Monument	Indian Lands	Fish and Wildlife Constraint	Fish Passage Constraint
UC-173	Stubblefield Dam	New Mexico	*	*	*	*	*	*	*	*	*		*		
UC-174	Sumner Dam	New Mexico												Х	
UC-175	Swasey Diversion Dam	Utah													
UC-176	Syar Inlet	Utah			Х										
UC-177	Syar Tunnel	Utah			Х									Х	
UC-178	Tanner Ridge Tunnel	Utah			Х										
UC-179	Taylor Park Dam	Colorado												Х	
UC-180	Towoac Canal	Colorado									Х				
UC-181	Trial Lake Dam	Utah			Х	Х									
UC-182	Tunnel #1	Colorado													
UC-183	Tunnel #2	Colorado													
UC-184	Tunnel #3	Colorado													
UC-185	Upper Diamond Fork Flow Control Structure	Utah			Х									Х	
UC-186	Upper Diamond Fork Tunnel	Utah			Х										
UC-187	Upper Stillwater Dam	Utah			Х										
UC-188	Vat Diversion Dam	Utah			Х										
UC-189	Vat Tunnel	Utah			Х										
UC-190	Vega Dam	Colorado													
UC-191	Vermejo Diversion Dam	New Mexico													
UC-192	Washington Lake Dam	Utah			Х										
UC-193	Water Hollow Diversion Dam	Utah			Х										
UC-194	Water Hollow Tunnel	Utah			Х										
UC-195	Weber Aqueduct	Utah			Х										
UC-196	Weber-Provo Canal	Utah													
UC-197	Weber-Provo Diversion Canal	Utah													
UC-198	Weber-Provo Diversion Dam	Utah													
UC-199	Wellsville Canal	Utah													
UC-200	West Canal	Colorado													
UC-201	West Canal Tunnel	Colorado													
UC-202	Willard Canal	Utah													
UC-203	Win Diversion Dam	Utah			Х										
UC-204	Win Flow Control Structure	Utah	*	*	*	*	*	*	*	*	*		*		
UC-205	Yellowstone Feeder Canal	Utah	*	*	*	*	*	*	*	*	*		*		

Total

MISSING SITE COORDINATE

2 1 69 5 0 0 1 1 2 0 3 17 0

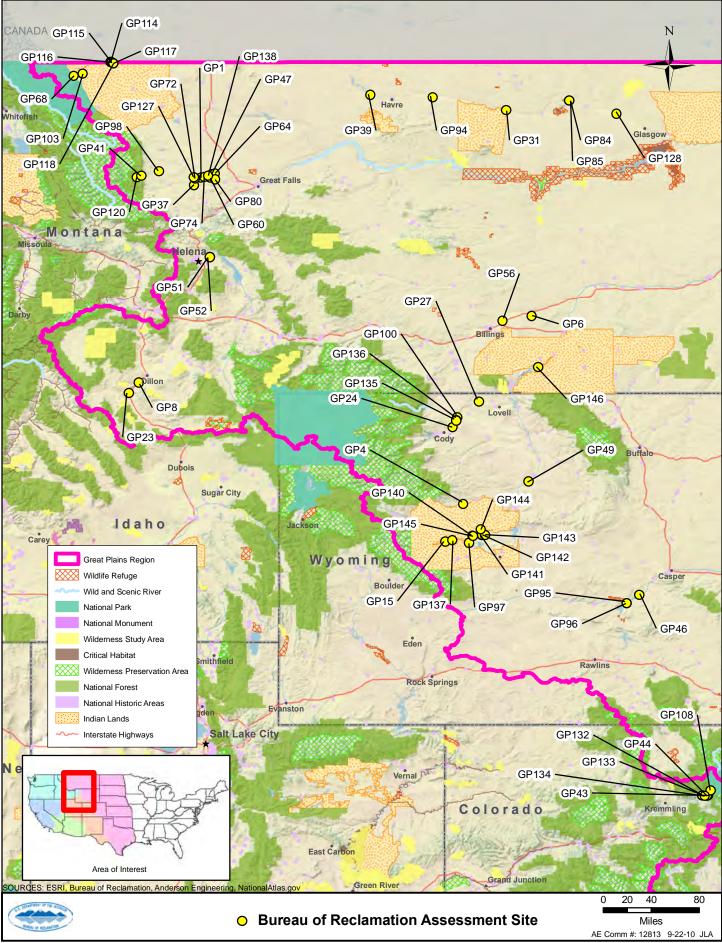


Figure F-1 : Great Plains Region (Northwest) Potential Constraints Map

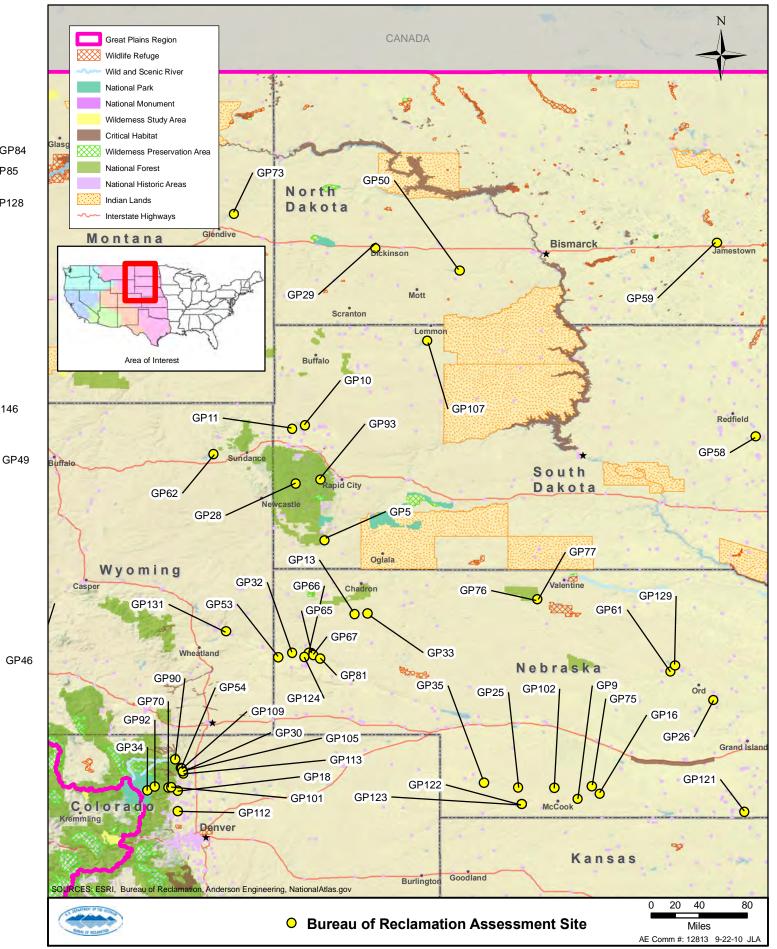


Figure F-2 : Great Plains Region (Northeast) Potential Constraints Map

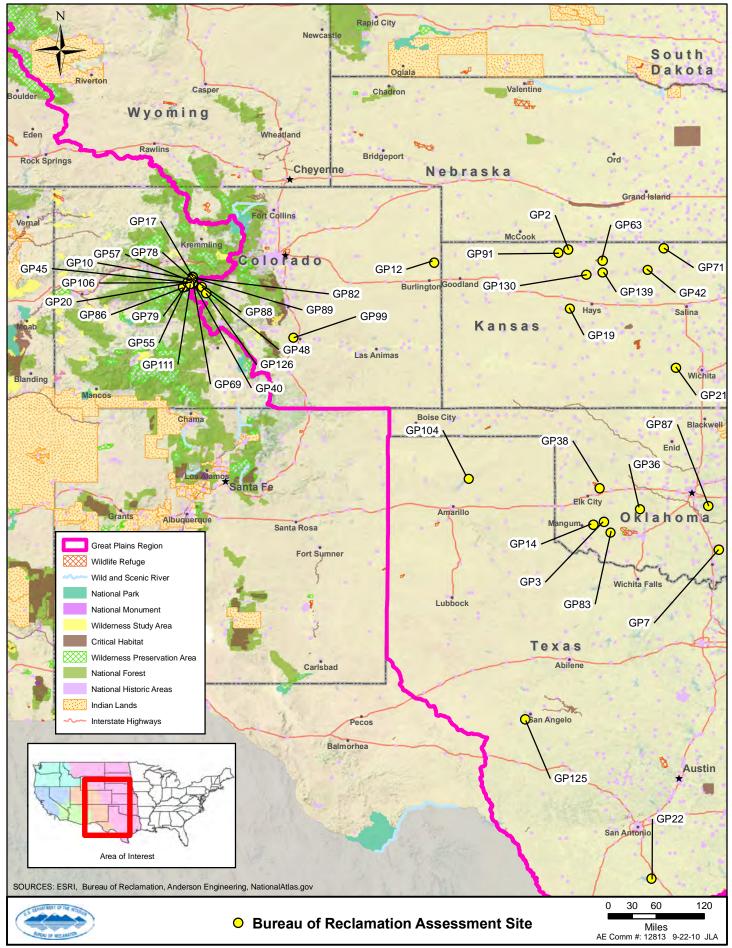


Figure F-3 : Great Plains Region (South) Potential Constraints Map

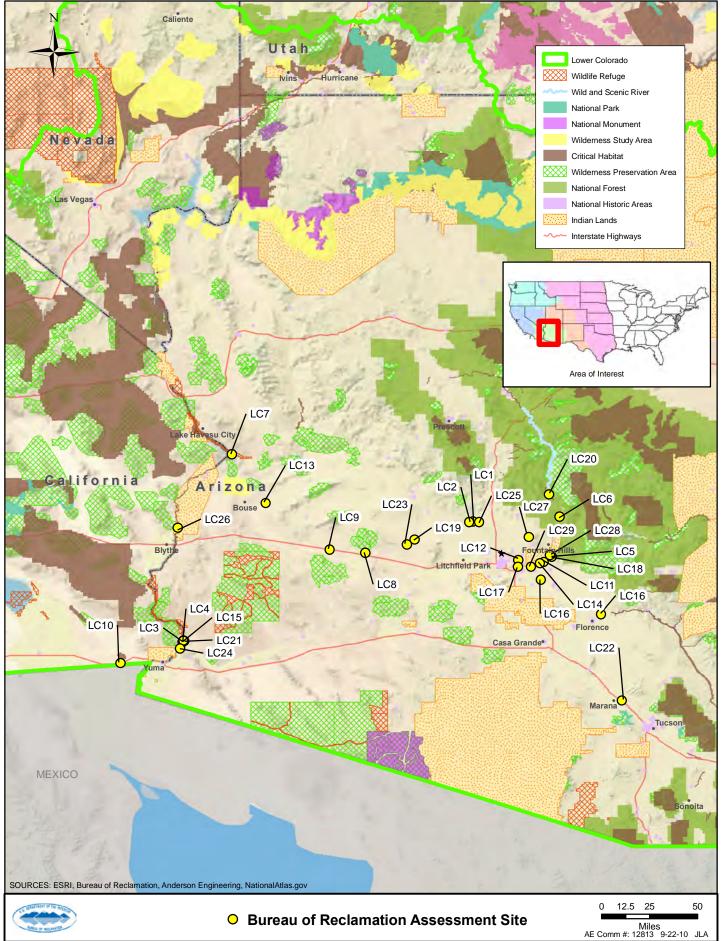


Figure F-4 : Lower Colorado Region Potential Constraints Map

Figure F-5 : Mid-Pacific Region (North) Potential Constraints Map

Figure F-6 : Mid-Pacific Region (South) Potential Constraints Map

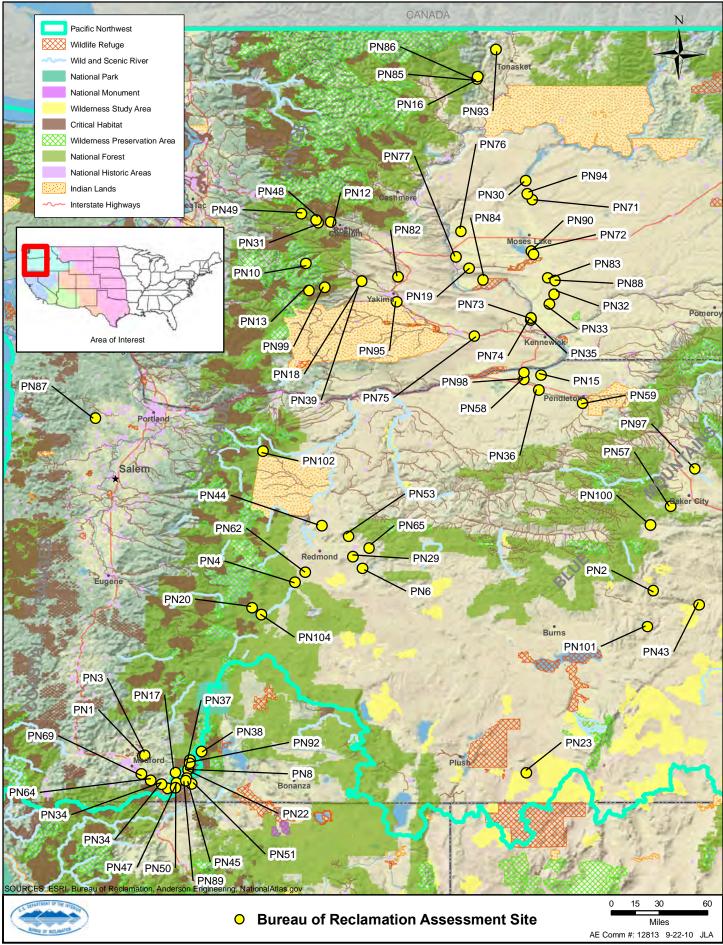


Figure F-7 : Pacific Northwest Region (West) Potential Constraints Map



Figure F-8 : Pacific Northwest Region (East) Potential Constraints Map

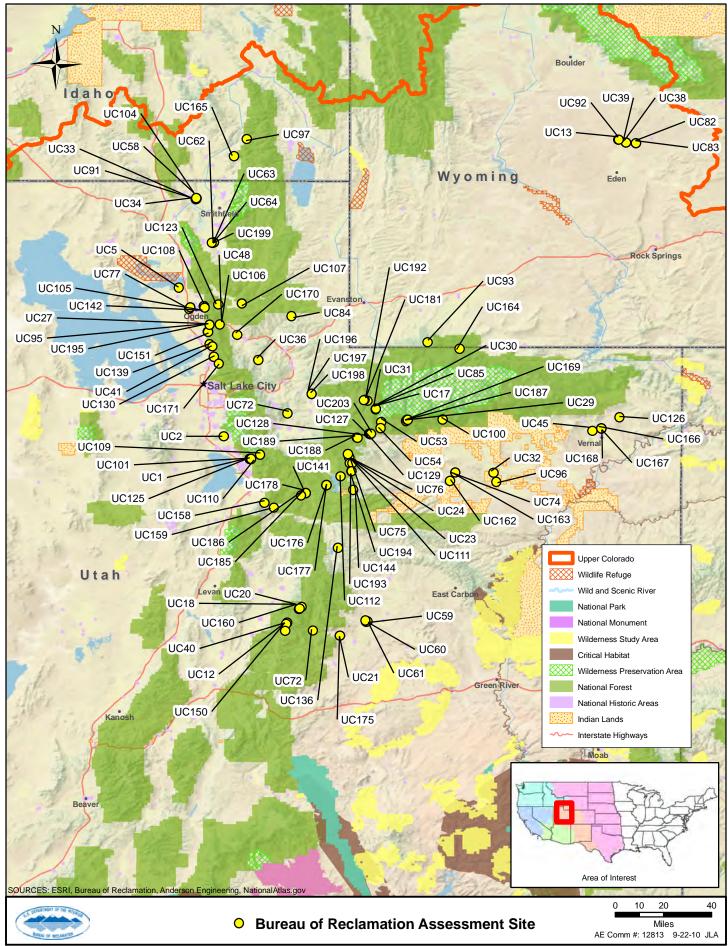


Figure F-9: Upper Colorado Region (West) Potential Constraints Map

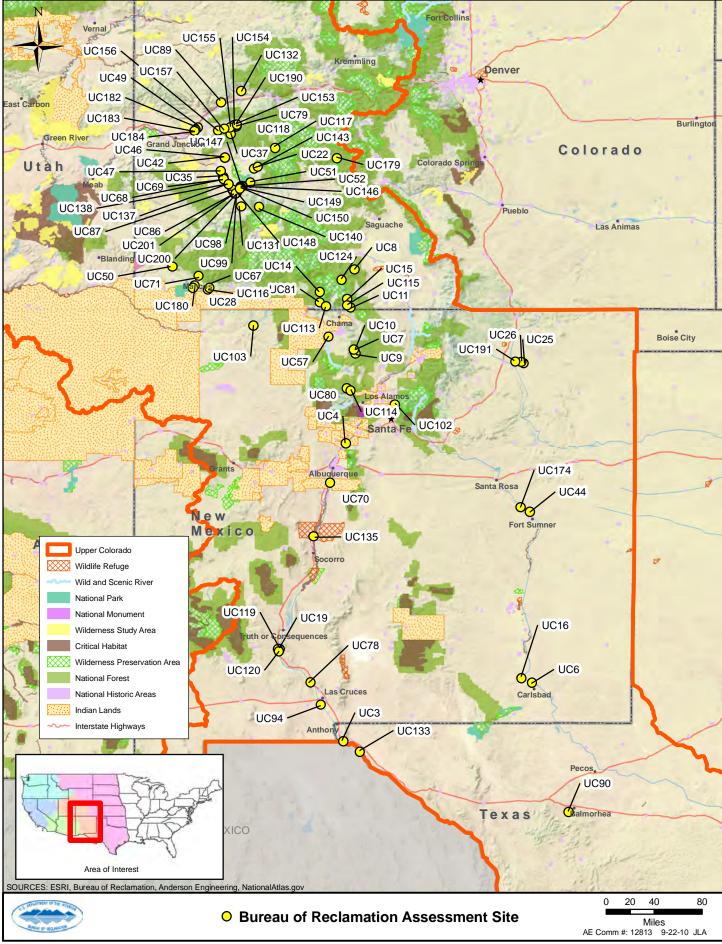


Figure F-10 : Upper Colorado Region (East) Potential Constraints Map

Appendix G Public Comment Summary

This appendix includes public comments received on the Draft Resource Assessment. Reclamation published a notice in the Federal Register on November 4, 2010 soliciting public comments on the draft report. The public comment period was scheduled through December 3, 2010. On December 28, 2010, Reclamation reissued a notice in the Federal Register extending the comment period through January 27, 2011, in response to public requests for an extension. The table below lists agencies or individuals that submitted comments on the draft report.

Name	Agency (if applicable)
Mike Bahleda	Halcrow
Carl Brouwer	Northern Water
Ron Corso	N/A
Robert S. Lynch	Irrigation and Electrical District Association of Arizona
Reed Murray	Department of the Interior
Linda Church Ciocci	National Hydropower Association
Alexis Phillips	Hydro Green Energy, LLC
Gene Shawcroft	Central Utah Water Conservancy District
Carl Vansant	HCI-Partners
David Woodward	Black & Veatch Corporation

The public submitted editorial comments and general comments on the objectives, scope, approach, and findings of the Resource Assessment. Reclamation incorporated editorial and general comments into the final report, as appropriate. Many comments received on the draft report were positive and consistent with Reclamation's objectives for hydropower development at existing facilities. Reclamation has noted all public comments and thanks the public for their interest in the draft report.

G.1 Comment Responses

Reclamation addressed comments in the final report, as appropriate, however, chose to provide some responses in this appendix to comments received in multiple letters or comments that could not be addressed in the report. This section presents comments and Reclamation's responses.

Comments received reflected understanding of the preliminary level of analysis of the Resource Assessment. Reclamation wants to reiterate that this final report is not a feasibility study. Site-specific feasibility level analysis is needed for any potential development of a site identified in the Resource Assessment. **General Comment:** The total realistic potential from the type of facilities contemplated in the report is perhaps 1 percent or less of Reclamation's existing hydropower capability.

Response: The Resource Assessment findings indicated that 268 MW of capacity is available producing up to 1,200,000 MWh. This amount is small relative to Reclamation's existing hydropower generation facilities; however, sites showing positive economic results do present a cost-effective, new renewable energy source. Sites in the Resource Assessment are sized at a 30 percent exceedance level. Total capacity would increase if sites were sized at a lower exceedance, such as 20 percent; however, costs would also increase, which can make fewer sites appear economically feasible. Section 5.7 presents a sensitivity analysis on use of exceedance levels.

Reclamation undertook the Resource Assessment to determine potential new sources of hydropower at existing facilities, even small hydropower, to help meet national renewable energy goals. This Resource Assessment does not guarantee development of any site, but Reclamation will work with developers interested in a potential hydropower project identified in the analysis.

General Comment: Is Reclamation evaluating increasing capacity at existing hydropower plants?

Response: Reclamation owns 58 hydropower plants that have capacity of approximately 15,000 MW. Reclamation is assessing potential capacity increases at the 58 hydropower plants through the Hydropower Modernization Initiative. The report, *Assessment of Potential Capacity Increases at Existing Hydropower Plants*, documents Reclamation's methods and findings for potential capacity additions at existing hydropower plants. The report can be accessed at http://www.usbr.gov/power/. This Resource Assessment focuses on developing new hydropower capacity at Reclamation's facilities; and, it is not within the scope of the study to evaluate upgrades to existing hydropower plants.

General Comment: Some sites analyzed in the Resource Assessment have additional development constraints, such as existing permits or rights to develop hydropower at the sites.

Response: Reclamation recognizes that some sites included in the Resource Assessment have FERC preliminary permits or development rights issued on them. Reclamation has included these sites because they fit the study scope of identifying hydropower potential at Reclamation-owned sites with no existing hydropower facilities. Reclamation will not interfere with existing plans or authority for hydropower development at sites included in the analysis. If any site is pursued in the future, Reclamation will examine and comply with existing rights. The final report, specifically Table 2-3 and Chapter 5, identifies sites with existing development plans, permits, or rights to development known to Reclamation. **General Comment:** Along with identifying the potential for hydropower development, it is important to accurately describe the current options and the administrative process for hydropower development.

Response: Reclamation-owned hydropower sites could be developed through a Lease of Power Privilege as opposed to a FERC license, as described in Chapter 6. The Resource Assessment does not go into detail on administrative processes as they vary by Regional Office. Reclamation can be contacted for additional information and will work with any public or private developers interested in pursuing a site to understand development processes and requirements.

General Comment: The cost estimates in the model could be conservative. **Response:** The model uses cost functions for total development costs, including construction, licensing and mitigation, and annual operating costs to estimate costs for 530 sites. The functions are intended to indicate a preliminary estimate of potential costs that can be compared to project benefits to identify potential sites to be further considered for hydropower development. For the scope of this Resource Assessment, results of the cost estimates are appropriate for this purpose. Cost estimate results for some sites may be conservative, and all costs need to be reexamined in the feasibility stage for any site pursued for hydropower development.

General Comment: Other environmental or regulatory constraints could exist that would affect mitigation costs.

Response: The constraints analysis in the Resource Assessment provides a broad overview of potential environmental or regulatory constraints that could be present at each site. It is important to note that other constraints could exist or constraints identified could prohibit development at a site. Furthermore, some constraints can have significant mitigation costs that would increase total development costs of the site. Because of the number of sites and extensive geographic range, it was not possible in this report to do a detailed analysis of potential constraints and associated mitigation costs at each site. Environmental and regulatory constraints and mitigation costs need to be further investigated during feasibility analysis.

General Comment: Can the tool be used for sites with high flows, greater than 5,000 cfs, and sites located outside of the states in Reclamation's service area? **Response:** The tool focuses on sites with flows less than 5,000 cfs and is not appropriate for use for higher flow sites. This flow limit is appropriate for sites analyzed in the Resource Assessment. Reclamation added an option for "Other" states in the summary worksheet of the Hydropower Assessment Tool. The user must input appropriate energy prices and green incentives rates if choosing the "Other" states option. Note the disclaimer statement in the tool.

G.2 Public Comment Letters

This section includes public comment letters received on the draft report. Email addresses and contact information were removed for privacy purposes. This page intentionally left blank.

From: Sent: Wednesday, November 10, 2010 10:01 AM To: Pulskamp, Michael Subject: Question Regarding the Hydropower Assessment Tool

Dear Mr. Pulskamp,

First off, I wanted to let you know that your Hydropower Assessment Tool workbook is fantastic. I find it to be a very helpful tool at work.

Anyway, the primary reason for this email is that I've dealt with some significant errors in the workbook. I've figured out through trial and error that your hydropower assessment workbook does not allow me to implement flow data over 5,000 cfs and add states that are not listed in your drop down menu on the start sheet.

My company's project sites can have flows that exceed 50,000 cfs and are in unlisted states. I was wondering if there is a way to fix this so that I can get a "rough" generation estimate?

Thank you very much. Look forward to hearing from you.

Best regards,

Alexis Phillips Hydro Green Energy, LLC -----Original Message-----From: Soeth, Peter D Sent: Thursday, November 04, 2010 9:15 AM To: Pulskamp, Michael Subject: Fw: Submission to Reclamation

Comment on final report.

----- Original Message -----From: To: Gabour, Robert; Soeth, Peter D Sent: Thu Nov 04 08:35:20 2010 Subject: Submission to Reclamation

From Ron Corso <u>on 11/04/2010 at 08:11:13MSGBODY</u>:

Regarding the draft report - "Draft Hydropower Assessment at Reclamation Facilities", dated November 2010, while I have not read the entire document, there is one formula the USBR may want to check on Page 2-12, Parag. 2-2, Site Hydrologic Data. The formula mentioned is not the power generation formula, it is the power potential in kW. The rule of thumb formula for kWh = 1.0241 * Flow (cfs)/.00138 * Net Head (feet) * Efficiency * Plant Factor. If one knows the plant factor (usually 50 % or less depending on hydrology), the kWh should be reduced by that plant factor.

Previous Page: http://www.usbr.gov/main/comments.cfm

From: Bahleda, Mike Sent: Friday, November 12, 2010 8:31 AM To: Pulskamp, Michael Cc: McCalman, Kerry L; Gabriel, Mark Subject: RE: Hydro Resource Assessment

Mike

I had a chance to look over the report and was impressed by the thoroughness of your approach to reexamining the sites based on the existing data. I have a couple of minor points I would suggest you consider. Since your cost assumptions are based on the 2002 INEL work, they may still be a little conservative for some of the marginal projects. You may want to expand the discussion of this area to make it clear to readers that this is a conservative assessment particularly as it relates to mitigation cost. Also, I might have subcategorized the sites on the Indian lands and Federal Forests as having additional challenges as opposed to constraints since both areas are potentially open to development as opposed to wildlife refuges and national monuments where it would be virtually impossible to site a project. You may want to consider subcategorizing and re-titleing the constraints category to give users a better sense of the continuum represented from additional challenges to virtually impossible.

All this being said the report is a great step forward and shows that there is significant opportunity for development within the Bureau's holdings. The added attraction is that these projects represent the potential for additional incremental firming capacity in a region of the country that is seeing extensive development of intermittent wind power that will also benefit from the build out of this capacity.

With 192 developable sites and 65 of those with positive b/c ratios using the conservative INEL assumptions it looks like there will be some interesting opportunities for the Bureau to work with the private sector. Will the final report lay out a Bureau plan to develop the sites beyond the procedural steps for development presented in the draft? I suspect you can't and possibly don't want to lay out a detailed plan, but it would help to encourage development if the Bureau came out with a general plan as to how you hope to approach development and to send a strong message that the Bureau wants to work with developer and the environmental community to add this capacity as quickly and with as little impact as practical. Given that most of these projects represent existing impoundments that should be achievable.

Having managed similar upgrade and capacity addition projects while I was with AEP and having produced EPRI's Life Extension and Modernization Guideline, I can appreciate the challenges you will face adding this capacity to your existing system. Please consider me a resource you can draw on regarding issues of capacity improvements or capacity additions at sites currently without generation. With Halcrow's worldwide talent pool, our Denver office with a focus on Water & Energy projects and my own background in this area, I think we have a lot to offer the Bureau as you look to develop this additional capacity.

On a related note this year's Hydrovision Policy and Regulations track has two panels that might provide a good forum to discuss the challenges of bringing this potential capacity on-line. Jeff Wright of FERC is moderating a session titled Focus on Small Hydro: Policies Favorable to Development and Tim Oakes is leading a session called Understanding the Relationship between Hydro and other Renewables. If you are interesting in either of these sessions as a panelist to talk about the Bureau's perspective, I will pass your contact information along to the moderators.

If there is anything that Halcrow and I can do to help the Bureau as you look to implement a plan to bring this capacity on-line please call on me.

Regards,

Mike Bahleda

Sr. Energy Consultant Halcrow From: Woodward, David
Sent: Thursday, November 04, 2010 12:13 PM
To: Pulskamp, Michael
Subject: FW: [Hpcommittee] Bureau of Reclamation Releases Report of Development at Reclamation Facilities for Comment

Dear M. Pulskamp,

I would like to provide one comment on the draft Hydropower Resource Assessment at Existing Reclamation Facilities:

The formula in Section 2.2, reads:

Power [kWh] = (Flow [cfs] * Net Head [feet] * Efficiency)/11.81

I believe the units of power should be kilowatts (kW), not kWh (kilowatt-hours).

David Woodward, P.E., Senior Project Engineer

From: Carl Vansant Sent: Monday, December 06, 2010 2:43 PM To: Pulskamp, Michael Subject: Comments - Draft Hydropower Resource Assessment at Existing Reclamation Facilites

Dear Mr. Pulskamp:

I am grateful for the opportunity to examine and comment on the report, "Draft Hydropower Resource Assessment at Existing Reclamation Facilities" (November 2010).

First, this report is vastly more informative than the 2007 "1834 Study."

I have only a few comments regarding broad premises and findings.

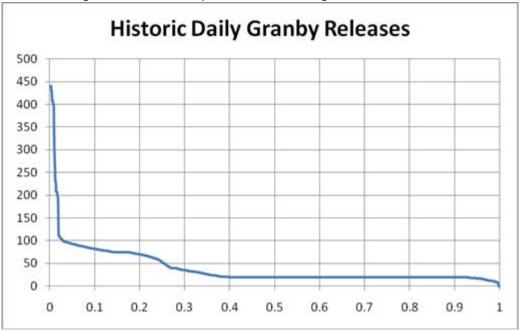
Regarding the bottom line reported in Table ES-2: i.e., a total of 259.7 MW of hydropower potential at benefit/cost ratios exceeding zero (or 167 MW of hydropower potential at a benefit/cost ratio exceeding 1.0); this is a powerful result. At the level of national policy, this leads to the conclusion: "Why bother?" ... The total realistic potential from the type of facilities contemplated in the report is perhaps 1% or less of Reclamation's existing hydro capability.

As the nation's second-largest hydropower producer (after the Corps of Engineers), I think it's reasonable for the nation's leaders and policymakers to look to Reclamation for energy solutions. Further, Reclamation has made substantial progress in recent years in hydro facilities upgrading – increasing the power and energy production capabilities. Would it not be appropriate for Reclamation to report on it's accomplishments in this regard? Also, there are surely additional cost-effective opportunities for getting more out of existing facilities that Reclamation could pursue (and likely is pursuing) ... could these be discussed?

Targeting the assessment to "municipalities and private developers" [as stated in "Purpose," page ES-1] may be an appropriate – especially considering the nature of the result (i.e., development opportunities in the range of 125 kW to 26 MW capacity). Yet, within the scope of Reclamation's operations, supporting such developments might well be a costly nuisance. It seems reasonable that the broad aim of enabling more energy production might be better achieved through other means.

Finally, I'll ask: Are there "thinking outside the box" – i.e., large scale – opportunities within Reclamation's purview that could make meaningful contributions to the nation's energy supply?

Best regards,


Carl Vansant

From: Carl Brouwer
Sent: Thursday, January 20, 2011 11:51 AM
To: Pulskamp, Michael
Cc: Don Carlson
Subject: Northern Water comments on Hydropower Resource Assessment report

Dear Mr. Pulskamp;

Northern Water has reviewed the Draft Hydropower Resource Assessment Report by Reclamation as it pertains to potential hydropower on certain Colorado-Big Thompson Project (C-BT) facilities. We offer to the following comments on the report.

Granby Dam. Granby Dam is used as an example throughout the report. Unfortunately, the wrong flow data was used. Based on Figure 3.2, it appears that the flow data included the amount pumped from Lake Granby into Shadow Mountain Reservoir as well as the actual releases from the dam. The result in making the correction will reduce the capacity to about 1.4MW and an output of approximately 4,000 MWhrs as opposed to the 7MW and 30,000 MWhrs shown in the report. This correction will need to cascade through the rest of the report in the remaining calculations.

Carter Lake. The head information for Carter Lake given in Table E.3 is not correct. The reservoir elevation is 5759. The outlet elevation is 5605. Therefore the maximum head is 154 feet before headlosses are included. It is unclear what flow information is utilized.

Horsetooth Reservoir. The maximum head in Table E.3 is shown to be 3,097 feet. The actual maximum head would be the maximum water level of 5430 less the outlet valve elevation of 5295 for a total of 135 feet. The design flow of 41 cfs seems very low for this site. Please note that additional releases are made from Horsetooth Reservoir out of the Soldier Canyon dam. The head at this site is higher, and the design flow of 41 cfs may be more appropriate at that site.

We appreciate the opportunity to offer these comments. If you have any questions, do not hesitate to contact me.

Sincerely,

Carl Brouwer, P.E., PMP Manager, Project Management Department Northern Water R.D. JUSTICE PRESIDENT

ELSTON GRUBAUGH VICE-PRESIDENT IRRIGATION & ELECTRICAL DISTRICTS ASSOCIATION OF ARIZONA

SUITE 140 340 E. PALM LANE PHOENIX, ARIZONA 85004-4603 (602) 254-5908 Fax (602) 257-9542 E-mail: rslynch@rslynchaty.com

WILLIAM H. STACY SECRETARY-TREASURER

ROBERT S. LYNCH COUNSEL AND ASSISTANT SECRETARY-TREASURER

<u>E-MAILED ONLY</u> (mpulskamp@usbr.gov) December 6, 2010

Mr. Michael Pulskamp Bureau of Reclamation Denver Federal Center, Bldg. 67 P.O. Box 25007 Denver, Colorado 80225

RE: Hydropower Resource Assessment at Existing Reclamation Facilities – Draft Report, 75 Fed.Reg. 67993-4 (November 4, 2010)

Dear Mr. Pulskamp:

We are writing to submit comments on the Draft Report which the Federal Register notice indicates are due by Monday, December 6, 2010. We recognize that this Draft Report stems from the 2010 federal Memorandum of Understanding for Hydropower and provisions of the Energy Policy Act of 2005. We wish to compliment Reclamation on the effort it has put into this Draft Report. It is clear to us that clean, renewable hydropower generated at Reclamation facilities is an important national resource and, especially in our region, a very valuable tool in managing power supply and offsetting carbon-based electricity generation needs. We hope that this study will lead to the possibility of feasibility level analyses for at least some of the identified sites.

Having said that, we wish to note that, on page 4 of the Draft's Executive Summary, you have placed a chart (Table ES-2) that identifies hydropower potential listed by benefit cost ratio ranges. Of the 192 sites examined, you identified 31 with a BC ratio of 1.0 to 2.0 and 9 with a BC ratio equal to or greater than 2.0, for a collective installed capacity increase of 167 megawatts out of a total of 259.7 megawatts identified.

While we have no quibble with this analysis, it points out how difficult finding new sites is and us wondering how more easily additional capacity could be found at existing hydropower plants without expensive construction.

For instance, Glen Canyon Dam operates at a maximum release of 16,000 cfs under current water conditions. That generates 604 megawatts of capacity at a facility that has a nameplate capacity of 1400 megawatts and an operational capacity in the range of 1340 megawatts. Raising the current maximum water releases at Glen Canyon Dam less than 30%, an operational change requiring no additional capital cost, would more than cover the proposed generation in your chart of projects that

Mr. Michael Pulskamp December 6, 2010 Page 2

have at least a one to one BC ratio. In short, tweaking Glen Canyon Dam operations would more than cover everything you've identified as potentially feasible. Operating Glen Canyon Dam at its current maximum allowable water release (25,000 cfs) for the short period during the day that this kind of peaking power is produced would generate more additional capacity than that potentially available at all of the sites you studied, economically feasible or not.

We very much appreciate the significant effort that went into developing this Draft Report. We hope that you now will study operational changes at existing facilities like Glen Canyon Dam to identify more operational adjustments that can produce increased hydropower generation opportunities.

Sincerely,

/s/

Robert S. Lynch Counsel and Assistant Secretary/Treasurer

RSL:psr

cc: Kellie Donnelly, Republican Deputy Chief Counsel, Senate Energy and Natural Resources Committee

Kiel Weaver, Republican Staff Director, Water and Power Subcommittee, House Natural Resources Committee

Tim Meeks, WAPA Administrator

Michael L. Connor, Commissioner of Reclamation

Larry Walkoviak, Regional Director, Bureau of Reclamation

Leslie James, Executive Director, CREDA

IEDA Presidents/Chairman and Managers

Central Utah Water Conservancy District

355 WEST UNIVERSITY PARKWAY, OREM, UTAH 84058-7303 TELEPHONE (801) 226-7100, FAX (801) 226-7107 TOLL FREE 1-800-261-7103 WEBSITE www.cuwcd.com OFFICERS Michael H. Jensen, President Randy Crozier, Vice President

Don A. Christiansen, General Manager Secretary/Treasurer

December 6, 2010

Mr. Michael Pulskamp Bureau of Reclamation Denver Federal Center, Bldg. 67 P.O. Box 25007 Denver, CO 80225 VIA EMAIL

Subject: Hydropower Resource Assessment at Existing Reclamation Facilities-Draft Report

Dear Mr. Pulskamp:

We appreciate the opportunity to review the subject report and support the concept of environmentally sustainable generation.

As has been communicated with Reclamation officials over many years, the Central Utah Water Conservancy District (District) has interest in hydropower development where ever feasible at Central Utah Project (CUP) facilities. You are well aware of our successful Jordanelle hydropower project and the associated partnerships.

As you know, the District is the sponsoring entity of the Bonneville Unit of the CUP with specific authority for completion of the CUP under the Central Utah Project Completion Act (CUPCA). In 2002 CUPCA was amended, which authorized federal funding for development of hydropower on the Bonneville Unit. Additionally, the District is under contract with the United States for construction, repayment, operation and maintenance of the project features. Therefore, we understand the Department of the Interior (DOI) would take the lead on hydropower development on such facilities and we respectfully request the opportunity to consult with DOI and Reclamation as necessary as development options are considered on CUP Bonneville Unit facilities.

If you have questions, please feel free to me at (801) 226-7120.

Sincerely,

the She

Gene Shawcroft, P.E. Assistant General Manager

cc: Lee Wimmer Rich Tullis Reed Murray (DOI) Curt Pledger (USBR)

Gary J. Anderson Randy A. Brailsford Brent Brotherson David R. Cox Randy Crozier Michael K. Davis Tom Dolan Claude R. Hicken Jani Iwamoto George R. Jackson Dallin W. Jensen Michael H. Jensen

BOARD OF TRUSTEES

Rondal R. McKee Kent R. Peatross Stanley R. Smith Gawain Snow Mark Wilson Boyd Workman

File Code: 3.P1.101

United States Department of the Interior

OFFICE OF THE SECRETARY Program Director CUP Completion Act Office 302 East 1860 South Provo, Utah 84606-7317 DEC 0 6 2010

IN REPLY REFER TO:

CA-1500 PRJ-17.00

Mr. Michael Pulskamp Bureau of Reclamation Denver Federal Center, Building 67 P.O. Box 25007 Denver, CO 80225

Subject: Draft Hydropower Resource Assessment at Existing Reclamation Facilities, Central Utah Project Facilities, Section 208, Central Utah Project Completion Act

Dear Mr. Pulskamp:

We have reviewed the Draft Hydropower Resource Assessment at Existing Reclamation Facilities (Draft Report) and appreciate the opportunity to submit comments. Although the Draft Report includes regulatory constraints considered in the evaluation, there are other constraints that should be considered such as pre-existing arrangements for hydropower development.

With regard to the Central Utah Project (CUP), there are associated laws, contracts, planning documents, National Environmental Policy Act documents, and Records of Decision that govern hydropower development on the CUP. In 1992, Public Law 102-575, of which Titles II through VI comprise the Central Utah Project Completion Act (CUPCA), transferred the responsibility for CUP construction to the Central Utah Water Conservancy District with Federal oversight by the Department of the Interior's CUPCA Office. The Sixth Water, Upper Diamond Fork, and Spanish Fork Flow Control structures, mentioned in the Draft Report, are part of the CUP, Bonneville Unit.

The CUPCA legislation authorized Federal hydropower development on Bonneville Unit features. Significant planning on the CUP has been completed including hydropower development. In 2004, documents were published which include plans for the Sixth Water and Upper Diamond Fork sites. These documents include the: September 2004, Utah Lake System Final Environmental Impact Statement; October 2004, Supplement to the 1988 Definite Plan Report on the Bonneville Unit; and December 22, 2004, Record of Decision. These documents are available at www.cupcao.gov.

In addition, there is pending legislation in Congress entitled the 'Bonneville Unit Clean Hydropower Facilitation Act.' This proposed legislation specifically addresses hydropower development on the Bonneville Unit, Diamond Fork System and is relevant to the facilities mentioned in the Draft Report.

Although the planning and environmental documents anticipate Federal power development, we recognize that private power development may also be a preferable option. Any private power development would be implemented by the CUPCA Office under a Lease of Power Privilege. This would be subject to an open and competitive process in compliance with Interior's guidelines and criteria including publication of a Federal Register Notice.

Along with identifying the potential for hydropower development, it is important to accurately describe the current options and the administrative process for hydropower development. We would be happy to discuss hydropower development on the CUP with you at your convenience. Should you have any questions, or to arrange for a meeting, please call Mr. Lynn Hansen at 801-379-1238.

Sincerely,

way Reed R. Murray

Program Director

cc: Mr. Gene Shawcroft Assistant General Manager, Central Utah Water Conservancy District 355 West University Parkway Orem, UT 84058-7303

25 Massachusetts Ave. NW, Ste. 450, Washington, D.C. 20001 • Tel 202-682-1700 • Fax 202-682-9478 • www.hydro.org

Mr. Michael Pulskamp Bureau of Reclamation Denver Federal Center, Bldg. 67 P.O. Box 25007 Denver, CO 80225

January 27, 2011

Mr. Pulskamp,

The National Hydropower Association¹ ("NHA") appreciates the opportunity to provide the following comments on the Bureau of Reclamation's ("Reclamation") *Draft Hydropower Resource Assessment at Existing Reclamation Facilities ("Assessment"*) released in November 2010.

NHA applauds the work Reclamation has undertaken as part of the 2010 Federal Memorandum of Understanding (MOU) for Hydropower to update its review of power potential at existing Reclamation facilities.²

While the Assessment highlights opportunities for growth on Reclamation's system, NHA and the industry were surprised by the comparatively low number of megawatts reported. From discussion with industry experts, we believe the potential is even greater than 260 MW. NHA views the Assessment as a good first step, and we urge continued analysis.

Congress and the Administration, as well as the states, have set ambitious energy goals for the country, seeking the short and long term benefits of significantly increased renewable energy generation, such as reduced emission of greenhouse gases and air pollutants. NHA believes that hydropower can and should play a leading role in meeting these goals by bringing significant new renewable energy generation online.

As the federal system makes up about half of the hydropower generation in the United States today, and as there is significant existing non-powered federal infrastructure that could be converted to generating resources, NHA and the hydropower industry believe Reclamation (as well as the Corps of Engineers) is uniquely situated to support the deployment of new hydropower resources to meet these goals.

General comments are provided in the following section. This letter also includes specific responses to the details of the Assessment.

¹ NHA is a non-profit national association dedicated exclusively to advancing the interests of the U.S. hydropower industry, including conventional, pumped storage and new hydrokinetic technologies. NHA's membership consists of more than 180 organizations including public utilities, investor owned utilities, independent power producers, project developers, equipment manufacturers, environmental and engineering consultants and attorneys. ² 2010 Federal Memorandum of Understanding for Hydropower, May 24, 2010.

25 Massachusetts Ave. NW, Ste. 450, Washington, D.C. 20001 • Tel 202-682-1700 • Fax 202-682-9478 • www.hydro.org

Overview

In general, NHA is pleased to note that this Assessment determined an increase in hydropower potential over the previous Reclamation assessment released in 2007 as part of the Section 1834 report prepared in accordance with the Energy Policy Act of 2005³. Though the 260 MW of potential capacity represents a more than 300 percent increase over the 52.7 MW in potential capacity identified at Reclamation facilities in the Section 1834 report, NHA believes that this amount remains a conservative estimate and does not document the full range of opportunities available on Reclamation's system.

NHA appreciates that the Assessment clearly states that it is not a feasibility study. (It is important to emphasize, as the Assessment does, that it utilized "broad power and economic criteria and it is only intended for preliminary assessments of potential hydropower sites."⁴ Hydropower project development is a complex and detailed site-specific venture, with the individual characteristics of the site playing a paramount role. The Assessment acknowledges that "[h]ydropower plants can be designed to meet specific site characteristics" and that "[d]esign features can significantly affect the power production and costs of a project."⁵ . As such, readers of the Assessment should be aware that more detailed study of individual sites may result in a different conclusion than that reached by the Assessment. However, utilizing the document as a screening level assessment of hydropower projects is a good start.

Finally, the updated Assessment, by its terms, was undertaken only to evaluate potential new projects at existing non-powered Reclamation dams. To more fully implement the 2010 MOU, NHA encourages Reclamation to assess and make available (if it has not done so already) data for upgrades or additions of capacity at existing hydropower projects throughout Reclamation's system. With this data on upgrades and backlogged O&M projects, Reclamation would be able to present a more complete picture of its potential contribution to increased hydropower generation. These issues were explored in the 2007 Section 1834 report, but NHA believes the analysis deserves a second look. With new turbine technology and other advancements, such upgrades and expansions have the dual benefit of increased power and improved environmental performance.

Specific comments on the Assessment methodology

The following comments were developed by NHA through a staff review of the Assessment and in consultation with industry members with expertise in project identification, screening, feasibility and due diligence review. In fact, several of NHA's member companies have engaged in analysis of Reclamation infrastructure for potential development by non-federal entities.

³ Section 1834 of the Energy Policy Act of 2005 required the Secretary of the Interior, the Secretary of the Army, and the Secretary of Energy to "jointly conduct a study assessing the potential for increasing electric power production at federally owned or operated water regulation, storage, and conveyance facilities."

⁴ Draft Hydropower Resource Assessment at Existing Reclamation facilities, November 2010. Section 4.3, p. 4-3.

⁵ Ibid. Section 4.4, p. 4-4.

National Hydropower Association

25 Massachusetts Ave. NW, Ste. 450, Washington, D.C. 20001 • Tel 202-682-1700 • Fax 202-682-9478 • www.hydro.org

Data is incomplete and may also underrepresent potential.

In Table ES-1, the Assessment indicates that Reclamation was unable to obtain hydrological data for 92 of the 530 sites analyzed. This represents a significant data gap of nearly 18 percent of the total possible sites. NHA commends the efforts of Reclamation staff in utilizing several data sources for the Assessment. However, we urge Reclamation to examine how it may locate the necessary information to evaluate these remaining sites, and to include funding to close this data gap as part of its FY 2012 budget proposal. A partnership with the Department of the Interior, through the United States Geological Survey's National Streamflow Information Program, may be able to provide the data to address this issue.

Our members also have concerns that the Assessment underestimates the potential capacity of projects. To estimate plant capacities and associated energy production, the Assessment "develops flow and net head exceedance curves and sets design flow and design net head at a 30-percent exceedance level to calculate installed capacity."⁶ Using the 30-percent exceedance flow and associated head to determine capacity could under-predict the best economic capacity for sites with skewed head and flow duration curves.

For example, an independent analysis by an NHA member company found that technical potential of one project, Cle Elum Dam in Washington State, was nearly three times that of the potential reported in the Assessment. Certainly, this is only one example of a difference in analysis between Reclamation and the industry. While this difference may not apply to all sites addressed in the Assessment, it does suggest that the sites warrant further investigation, and perhaps collaboration with industry experts, to provide the most complete picture of the potential for hydropower development at Reclamation facilities.

Additionally, Table ES-1 demonstrates that 182 sites contained no hydropower potential whatsoever. The Assessment states that at these sites "[I]ocal area knowledge or available hydrological data indicated that the site does not have hydropower potential because flows or net head are too low for hydropower development."⁷ This number represents approximately 34 percent of the total sites.

Generally, this summary conclusion analysis could be accurate, but for NHA it remains a surprisingly high number and begs several questions. Is the available hydrological data for these sites current and accurate? Is there a need to update this data? The Assessment would seem to indicate that projects at these sites are not viable utilizing conventional, traditional technology. At a minimum, there appears to be a research and development opportunity for which the Reclamation could partner with the Department of Energy to investigate and test new applications that take advantage of the multitude of low-head or low-flow sites. In fact, Reclamation staff have suggest ed that Reclamation could play a lead role in creating a technology demonstration park utilizing existing hydraulic and electrical infrastructure to support the evolution of new, low head technologies that could be specifically used in irrigation canal drops and other water delivery systems.

⁶ Ibid, Executive Summary, p. ES-2.

⁷ Ibid, Executive Summary, p. ES-3.

National Hydropower Association

25 Massachusetts Ave. NW, Ste. 450, Washington, D.C. 20001 • Tel 202-682-1700 • Fax 202-682-9478 • www.hydro.org

Economic analysis may contain imperfect cost assumptions

NHA also is concerned with the economic analysis used to produce the Assessment.

First, the cost estimates developed in the Assessment are based on a regression analysis of the cost of installed hydropower projects completed by the Idaho National Lab (INL) in 2002. While this represents the most recent government data available, NHA notes that it is now almost 9 years old and that the economic climate in 2011 varies dramatically from that in 2002. Because of this, industry members raise the possibility that the INL cost data does not now accurately reflect actual facility development, design, and construction costs, and that real-world experience provides a better gauge of these costs.

For example, INL cost factors have been escalated by 30 percent to account for inflationary cost increases occurring since 2002. Industry members believe this escalation factor may be too high based on the recent history of inflation rates experienced over the last several years and the existing economic climate.

Additionally, the Assessment's assumptions on mitigation costs may need to be reconsidered. In section 3.3.2 of the Assessment, Reclamation discusses assumptions related to mitigation costs for potential hydropower projects stating:

"Other costs that may apply, depending on the specific site, include fish passage requirements, historical and archaeological studies, water quality monitoring, and mitigation for fish and wildlife, and recreation. The magnitude of the above mitigation costs is dependent on the installed capacity of the project. In general, mitigation costs would increase the larger the project...In general, mitigation costs are very site specific and should be reevaluated if a site is further analyzed. Mitigation costs could differ significantly than those presented in this analysis." (P.3-17)

Given that mitigation costs for hydropower are highly site specific, it may not be appropriate to assume that these costs are dependent on the installed capacity of the project. It might be more appropriate to increase the contingency on the construction costs to account for potential mitigation measures with the general belief that higher project construction costs correlate with larger project sizes better able to support mitigation expenses. Understandably, smaller projects have little margin to absorb significant mitigation expenses.

Assessment excludes important incentives from analysis

In the Assessment, Reclamation attempts to inventory and consider policy incentives that benefit hydropower development (p.3-14). While the Assessment explores several incentives, such as the Federal Production Tax Credit and specific state performance incentives, other critical financial incentives, specifically installation-based federal incentives, are not adequately addressed.

While it is true that such incentives can vary based on factors such as ownership and date of implementation, NHA believes that excluding these policies undervalues the role they play in supporting project development. Indeed, two programs in particular have proved to be valuable investment tools over the past few years. Programs like the Section 1603 "grants in lieu of tax credits" program and

25 Massachusetts Ave. NW, Ste. 450, Washington, D.C. 20001 • Tel 202-682-1700 • Fax 202-682-9478 • www.hydro.org

Clean Renewable Energy Bonds have provided over \$570 million to private and public electric companies to expand and upgrade current hydro facilities since 2007.

Additionally, looking at the Benefit Cost Ratio that Reclamation employed in this analysis illustrates that an opportunity exists to further incentivize the development of clean, renewable and reliable hydropower resources. Sixty-five sites, totaling 210 MW of installed capacity, are identified as being most cost efficient based on Reclamation's scale. That number could be increased by more than 10 percent if the next group of cost efficient projects (those ranked between .5 and .75) were bolstered by stronger incentive policies. That's an additional 88,143 MWh a year in generation, enough to power almost 8,000 American households annually.⁸

Conclusion

NHA once again commends Reclamation on updating its review of non-federal hydropower development opportunities on existing non-powered Reclamation dams. The Assessment highlights several key issues:

1) maximizing existing infrastructure is low-hanging fruit to meet the goal of developing more U.S. renewable energy resources;

2) the federal hydropower system, and in particular Reclamation, has an important role to play in realizing this untapped potential;

3) incentives for development can expand the universe of hydropower projects that are economically viable.

4) continued study of hydropower potential in general, and federal potential in particular, is necessary to fill data gaps and present the best information and most accurate picture of growth opportunities.

Thank you again for this opportunity to comment. NHA hopes that these comments provide useful recommendations to improve upon the Assessment methodology. The Association stands ready to work with Reclamation and other federal agencies to expand hydropower generation in the United States and meet the administration's renewable energy goals.

Sincerely,

inca Church Cisci

Linda Church Ciocci Executive Director

⁸ Based on EIA estimation of annual average household electricity consumption of 11,040 kWh.