Off the Chart! Measuring Hydro’s Value...
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Complexities, Constraints, and Challenges
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REVIEW OF HPLIG GOALS |

Assess Methods to Value:

Ancillary Benefits of Hydropower

v Energy-Capacity

v Load Following

v Load and Voltage Regulation
v'Reserve Capacity



REVIEW OF HPLIG GOALS Il

Assess Methods to Value:

Non-Energy Economic Benefits
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METHODS AND DATA

Market and Non-Market Values
Consistent Hydro Economic Values
National-Regional Literature/Analyses
IMPLAN (Economic Impact Multipliers)
Regional Power Markets

Marginal Supply Costs

Market Exchange Value Estimates



RESULTS

Summary of National Values:

Data include four regions: NW,;
NE; Mid Atlantic; and SE

v Energy Benefits
v’ Ancillary Benefits
v'"Non-Energy Benefits



The Economic Benefits of Hydro Projects (Example)
“Econ-Green No.1” Hydro Project

Climate Change
Environment
$5-19/MWh
$0.5-8/m.t.

Municipal-Residential

Renewables
Hydropower Integration
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Power
Reserves
$10-70/MWh

= -. ‘ "
$1,500-3,500
Acre-ft.

Recreation

New Resource
Costs
70-120/MWh $25-50 MWh

$30-130 4
MWh

Boating-Fishing . Navigation-
$50-120/Day/ Re Transport
Person '

Industrial
Cooling
—

Irrigation

$12/Ton

$1,500-3,500 Flow Regulation

Acre-ft. Recreation S
$80-120/Day/

$1,500/Acre-ft. Person




FERC Annual Costs, Powﬁi
and Net Benefits — Priest R
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CONCLUSIONS

All Benefits of Hydro: o
v'Are valuable but not equal
v'Benefits can be monetized $

v'Are being traded without
accounting for “net” societal
benefits

v'Net benefits appear to be
declining and portend trouble




RECOMMENDATIONS

Increased awareness of:

v Cost: Benefits from Hydropower is
different than other sources of energy

v'Regulations: now ignore cost : benefits
In traditional economic terms

v Risks: greater potential for major
outages and large unrecognized costs




Thank you,

CEATI International Inc.
and the entire HPLIG Committee



TheNature C)

Conservancy

Protecting nature. Preserving life.

Maximizing values of river. basins:
moving from the project to the basin scale

Jeff Opperman
he Nature Conservancy.
NHA Conference; April 2010
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Penobscot River and Tributaries

Number of Dams Downstream to get to or from the ocean after the PRRP is complete

Before PRRP| After PRRP

| Medway Dam
o Energy Enhancement

THIVIA
HINMSNITHA MIN
MINMAS NIME MM

West Enfield Dam
Energy Enhancement &
Existing Enhanced Fish Pasgage

Milford Dam
Energy Enhancement &
Kew Enhanced Fish Passage

Stilbwater Dam

Energy Enhancement Howdand Dam

J Decommission/Fish Bypass

,
= L . l

el Great Waorks Dam
Y| Decommission | Removal

X .

Crono Dam
Energy Enhancemant

| fkt I | Number of Dams to the Ocean v gk Dacq e Dam
CREAN ;i VL ' L 0T 0 Does not include dams not mapped by the state and
2 y e T j, o 7| === 1 does not Imply free passage up natural barrlers or
Moy pRAE S Ll £ 1] (88| == 2 man-made barriers such as road crossings. | ¥
ol A e : e : A 3 ;":"' €4 Al - : Ellsworth Dam {Union River)
5 y ] 4 xﬁ—}kf_-l e fm,” erfiest I Energy Enhancemaent
. ; b T — For 1= e ! ] ;
7 a i 5 or more =i - 2
e ——— . 3 4 ] S 3
£ i fis o (i

r 9 Penobscot River Watershed




Penobscot example: basin-scale approach

Scenario A (the |[Scenario B (the
past) future)

Annual energy ~ 300,000 MWh
generation

Proportion of basin | Minimal
accessible to
migratory fish

Annual shad run Near zero

TheNature ct\
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Protecting nature. Preserving life.’




Penobscot example: basin-scale approach

Scenario A (the |[Scenario B (the
past) future)
Annual energy ~ 300,000 MWh |~ 300,000 MWh
generation
Proportion of basin | Minimal Majority of basin
accessible to
migratory fish
Annual shad run Near zero 1.5 million
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Maximizing total values froem river basins

In addition to quantifying the non-energy benefits of
hydro, we can quantify the non-hydro benefits of rivers.
Understanding both concepts can contribute to
maximizing total values from river systems.

*Penobscot Case study: for a given energy target,
future Penobscot comes much closer to maximizing
total values of river basin.

*Are there more “Penobscots” out there? What are the
necessary ingredients for achieving similar outcomes?

sLarge spatial approach essential for maximizing total
values from river systems. ﬁ ~. y
( ( ) TheNature CJ)
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“Holistic Hydropower Optimization”

Brennan T. Smith

Program Manager, Wind & Water Power Technologies
Oak Ridge National Laboratory

NHA Annual Meeting
April 27, 2010
Washington, D.C.




Hydropower Context

 An important component of water resources
development and management:
— Flood damage reduction
— Municipal, industrial, and agricultural water supply
— Clean, renewable energy production
— Energy reliability and security
— Ecological provision and management
— Commercial navigation
— Recreation and aesthetics

All are under stress and increasing demands!




Spatial / Temporal Scale and Horizon
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Complex Hydropower Decisions

* Questions
— Can we value and compare multiple objectives?
— Can we measure and allocate benefits?
— Can we influence outcomes amidst uncertainty?
— Can we improve knowledge and controls?

* Dimensions
— Multiple time-horizons for decisions and outcomes
— System boundaries and spatial scales for decisions and

outcomes S a
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Example: Optimizing Ecological Value with the Oak Ridge Chinook Model

Water volume attributes:
% pool vs. riffle

number of predators

number of overlapping spawners
number of larger Chinook competitors \m
weighted usable area
temperature and flow

Rm . v

Rearing of offspring, Emergence

lip,
in redds as eggs in alevins of offspring ’77/[(/)073
WINTER )

Spawning high-temperature low-temperature Snowmelt
redd mortality redd mortality increases flow

Upmigration redd scouring premature
of adults or dewatering outmigration Increasing
temperature temperature

? high-temperature

juvenile mortality Outmigration

flow SPRING of smolts

Decreasing

National Laboratory



Towards New Solutions

* Decision support convergence

— Water ops, power sys ops, eco-monitoring from minutes to months —
We manage, but are we near-optimal? What about wind/solar?

— Integrated models for development and environmental assessment —
Challenging and expensive for industry alone. Are we missing the
sweet spots for ecology and energy?

 Markets and more markets — ancillary services, RECs, carbon
— Can and should we “monetize” ecology?
e Workforce development

— Hydropower professionals must define and address “grand
challenges” to engage graduates

— Scientists, engineers, regulators, economists, attorneys, educators ...

DOE and others are working on it. Stay tuned!
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