Off the Chart! Measuring Hydro's Value...

Session Moderator

Patrick March Principal Consultant, Hydro Performance Processes Inc.

Panelists

John Pizzimenti, PhD Vice President, GEI Consultants, Inc.

Jeff Opperman, PhD Senior Advisor for Sustainable Hydropower, The Nature Conservancy Brennan Smith, PhD

Program Manager, Wind and Water Power Programs, Oak Ridge National Laboratory

National Hydropower Association Annual Meeting Session 5B Tuesday, April 27, 2010 - 3:45 PM - 5:00 PM

Complexities, Constraints, and Challenges

Environmental

Weather Fish & Wildlife **Flood Control** Water Temperature Water Quality Water Supply **Quality of Shore**

John J. Pizzimenti, Ph.D. Darryll Olsen, Ph.D. Rick K. Suttle, M.L.A

April 27, 2010

Quantifying the Non-Energy Benefits of Hydro Power

Prepared for: CEATI International Inc. Montreal Canada

REVIEW OF HPLIG GOALS I

Assess Methods to Value :

Ancillary Benefits of Hydropower

✓ Energy-Capacity
 ✓ Load Following
 ✓ Load and Voltage Regulation
 ✓ Reserve Capacity

REVIEW OF HPLIG GOALS II

Assess Methods to Value :

Non-Energy Economic Benefits

Irrigation-Water Supply
 Recreation
 Flood Control
 Environmental
 Navigation

10/29/09

METHODS AND DATA

- Market and Non-Market Values
- Consistent Hydro Economic Values
- National-Regional Literature/Analyses
- IMPLAN (Economic Impact Multipliers)
- Regional Power Markets
- Marginal Supply Costs
- Market Exchange Value Estimates

10/29/09

RESULTS

Summary of National Values:

Data include four regions: NW; NE; Mid Atlantic; and SE

✓ Energy Benefits
 ✓ Ancillary Benefits
 ✓ Non-Energy Benefits

10/29/09

FERC Annual Costs, Power Benefits and Net Benefits – Priest Rapids

ANNUAL VALUES	NO ACTION	APPLICANT PROPOSAL	FERC LICENSE CONDITION
PROJECT CAPACITY MW	1,893	1,994	1,994
GENERATION MWh	9.4	9.8	9.8
POWER VALUE (millions)	\$329	\$377	\$377
\$ / MEGAWATT-HOUR	38.28	38.69	38.69
COST (millions)	\$69	\$146	\$146
\$ / MEGAWATT-HOUR	8.06	15.04	14.93
NET BENEFIT (millions)	\$260	\$231	\$232
\$ / MEGAWATT-HOUR	30.22	23.64	23.75

CONCLUSIONS

All Benefits of Hydro: Are valuable but not equal ✓ Benefits can be monetized \$ Are being traded without accounting for "net" societal benefits

Net benefits appear to be declining and portend trouble

RECOMMENDATIONS

Increased awareness of:

- Cost: Benefits from Hydropower is different than other sources of energy
 Regulations: now ignore cost : benefits in traditional economic terms
 Risks: greater potential for major
 - outages and large unrecognized costs

Thank you, CEATI International Inc. and the entire HPLIG Committee

Maximizing values of river basins: moving from the project to the basin scale

Jeff Opperman The Nature Conservancy NHA Conference; April 2010

Penobscot River Restoration Project

Penobscot River and Tributaries

Number of Dams Downstream to get to or from the ocean after the PRRP is complete

Penobscot example: basin-scale approach

	Scenario A (the past)	Scenario B (the future)
Annual energy generation	~ 300,000 MWh	
Proportion of basin accessible to migratory fish	Minimal	
Annual shad run	Near zero	

Penobscot example: basin-scale approach

	Scenario A (the past)	Scenario B (the future)
Annual energy generation	~ 300,000 MWh	~ 300,000 MWh
Proportion of basin accessible to migratory fish	Minimal	Majority of basin
Annual shad run	Near zero	1.5 million

Maximizing total values from river basins

 In addition to quantifying the non-energy benefits of hydro, we can quantify the non-hydro benefits of rivers. Understanding both concepts can contribute to maximizing total values from river systems.

•Penobscot Case study: for a given energy target, future Penobscot comes much closer to maximizing total values of river basin.

•Are there more "Penobscots" out there? What are the necessary ingredients for achieving similar outcomes?

•Large spatial approach essential for maximizing total values from river systems.

"Holistic Hydropower Optimization"

Brennan T. Smith Program Manager, Wind & Water Power Technologies Oak Ridge National Laboratory

> NHA Annual Meeting April 27, 2010 Washington, D.C.

Hydropower Context

- An important component of water resources development and management:
 - Flood damage reduction
 - Municipal, industrial, and agricultural water supply
 - Clean, renewable energy production
 - Energy reliability and security
 - Ecological provision and management
 - Commercial navigation
 - Recreation and aesthetics

All are under stress and increasing demands!

Spatial / Temporal Scale and Horizon

Resolving events and processes—examples:

- Reproduction, mortality, growth
- Drought, floods, climate change
- Reservoir stratification and turnover
- Peak energy and ancillary services valuation

Modeling across time scales

- Aligning energy, water, and ecological model timing
- Transferring energy, mass balance, and other constraints between nested models

Complex Hydropower Decisions

• Questions

- Can we value and compare multiple objectives?
- Can we measure and allocate benefits?
- Can we influence outcomes amidst uncertainty?
- Can we improve knowledge and controls?
- Dimensions
 - Multiple time-horizons for decisions and outcomes
 - System boundaries and spatial scales for decisions and outcomes

Example: Optimizing Ecological Value with the Oak Ridge Chinook Model

Towards New Solutions

• Decision support convergence

- Water ops, power sys ops, eco-monitoring from minutes to months –
 We manage, but are we near-optimal? What about wind/solar?
- Integrated models for development and environmental assessment Challenging and expensive for industry alone. Are we missing the sweet spots for ecology and energy?

• Markets and more markets – ancillary services, RECs, carbon

– Can and should we "monetize" ecology?

Workforce development

- Hydropower professionals must define and address "grand challenges" to engage graduates
- Scientists, engineers, regulators, economists, attorneys, educators ...

DOE and others are working on it. Stay tuned!

Complexities, Constraints, and Challenges

Environmental

Weather Fish & Wildlife **Flood Control** Water Temperature Water Quality Water Supply **Quality of Shore**

