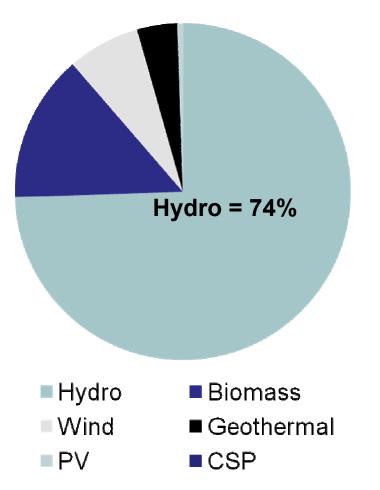
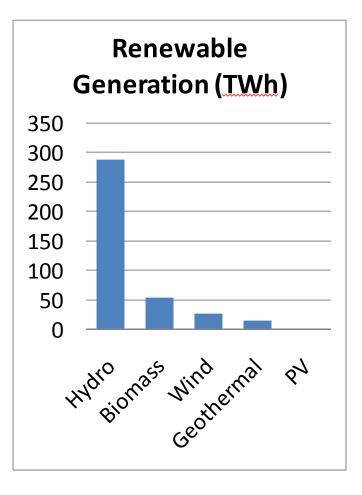
National Hydropower Asset Assessment Project: a path to better understanding of critical resources

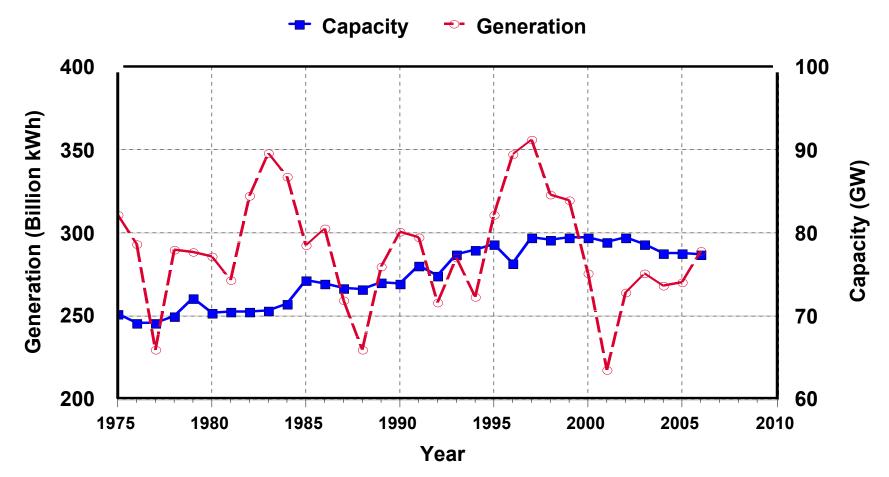
Michael J. Sale Inspired Systems and




U.S. Department of Energy Office of Energy Efficiency and Renewable Energy

Hydropower is the foundation of renewables in the U.S

EIA generation data from 2006

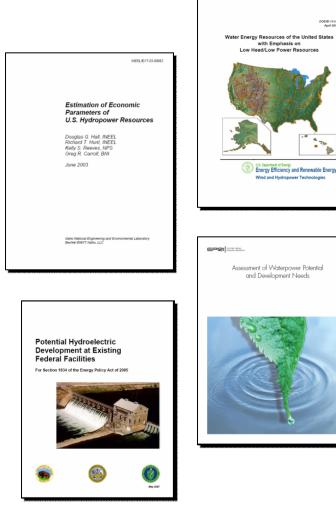


Trends in hydropower are troubling

Historical trends in Capacity and Generation

Hydropower in U.S. is a heterogeneous mix

Energy Efficiency & Renewable Energy


	Number of Projects	Number of Units	Total Capacity (GW)	Average Project Size (MW)	Average Units per Project	Average Unit Size (MW)
Corps of Engineers	74	350	20.4	276	4.7	58
Bureau of Reclamation	58	194	14.8	255	3.3	76
TVA	29	109	3.9	134	3.8	36
Total Federal	161	653	39.1	243	4.1	60
FERC Licenses *	1012	n/a	53.5	53	n/a	n/a
FERC Exemptions	595	n/a	0.8	1.4	n/a	n/a
Total Nonfederal *	1607		54.3	34		

* Includes approximately 18 MW of pumped storage projects.

The whole portfolio must be understood to reach a unified understanding of national trends.

Basic problem: old data used to predict future directions

- EPRI studies of potential resources fall back to studies from early 2000s, which are based on FERC HPRA and NPS data of 1990s
- NREL carbon abatement study and new NHA/Navigant study rely on cost data from 2003
- EPAct Section needs to be updated

Energy Efficiency & Renewable Energy

New understanding will require a new database

Initial scope: Describe all existing federal and nonfederal facilities

- Project characteristics
 - Power plants and equipment
 - Dams, diversions and reservoirs
 - Connectivity in river
 basins
- Generation patterns for at least 10 years
- Water availability and competing water uses

Expanded scope in FY09

- Add pumped storage projects
- Add cost of development data
- Link to Regional Energy Deployment Systems Model (ReEDS) at NREL
- Import new resource data collected in FOA-2009

Analysis Team:

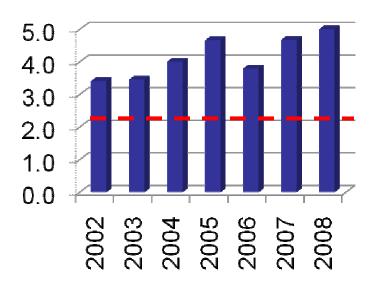
EnergyWorks, ORNL, NREL, other private sector advisors and contractors, plus agencies

NHAAP can be the basis for additional studies

- Hydroelectric Power Assessment required by the Omnibus Public Lands
 - H.R. 146, Sec. 9505, signed March 30, 2009
 - Effect of global climate change on water supplies for hydropower and power supplies from PMAs
 - Report due April 2011 and every 5 years thereafter
 - DOE to lead, in consultation with PMAs, USGS, NOAA, and states
- Value of hydropower to interconnection of renewables to the grid

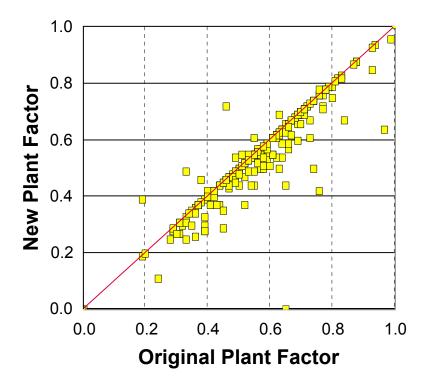
Initial results will be available in December 2009

- Get beyond the cycle of planning future on outdated information
- Build new basis for answering key questions:
 What are markets for new technology?
 - What will it cost to develop new resources?
 - How does generation respond to
 - water availability
 - competing uses
 - climate variability and change


Now let's get to work !

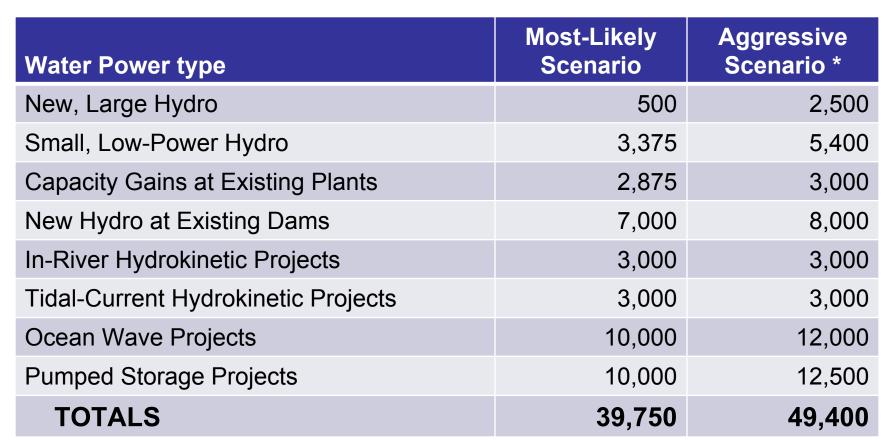
Hydropower is showing signs of deterioration

Energy Efficiency & Renewable Energy



Corps projects are progressively less available for generation

Forced Outage Rate (%)


Industry average and Corps Goal is 2.0% (red dashed line) Nonfederal projects have lower capacity factors after relicensing

Lack of investment drives these trends.

EPRI estimates large blocks of new water power by 2025

* Aggressive scenario involves strong policy and investment strategies at federal and state levels.

Source: Updated Edition of Assessment of Waterpower Potential and Development Needs. EPRI, Palo Alto, CA: 2009.

Myths persist about Hydro

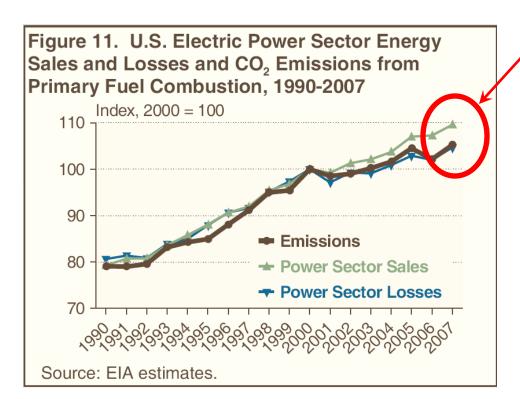
- Myth: Hydro technology is mature and well understood
 - Fact: DOE-led R&D improved generation at Wanapum Dam by 14%
- *Myth:* Hydro is cheap
 - Fact: Hydro is now the most expensive renewable; new development costs are more than \$3,000/kW
- Myth: All Hydro is bad for the environment
 - Fact: Many large projects have been certified as "Green Hydro" by environmental NGOs via LIHI
- *Myth:* Hydro industry does not need federal investments
 - Fact: Available industry funding is consumed in regulatory compliance and competitive markets
- *Myth:* There are no new sites for development
 - Fact: EPRI conservatively estimates 10GW new by 2025

Energy Efficiency & Renewable Energy

Loss of hydropower negates gains in other renewables

- Examples:
 - Loss in hydro capacity since 2000 (-2.5 GW) is equal to all existing geothermal capacity
 - Annual variability in hydro generation (<u>+</u> 70 TWh) exceeds total generation from other renewables
- Other troubling trends in Hydropower:
 - Availability of Corps projects is steadly dropping
 - Capacity factors drop in relicensing
- Bottom line: when we need more, we are getting less, because of neglect of the sector

Hydropower is no longer the cheapest renewable



	Capacity (GW) by Scenario			Cost (\$/kW or kWh)		
Development Type	Low	Medium	High	cost now	2030 cost	life time
New small hydro at new dams	0	5	12	3,125	2,900	50
New hydro at existing dams	8	15	21	2,010	1,810	30
Capacity upgrades	5	5	5	1,340	1,205	25
Efficiency upgrades	3.5	5.7	7.1	0.042	0.038	25
	16.5	30.7	45.1			

Source: McKinsey/NREL carbon abatement study, 2009

Decrease in hydropower affects total GHG emissions

0.4% increase in carbon intensity in 2007 was due to a 40-TWh drop in hydropower generation, which offset increases in wind and nuclear EIA 2008

Source: Emissions of Greenhouse Gases in the U.S. 2007, DOE-EIA-0573(2007), December 2008.