

CEAT

Centre for Energy Advancement through Technological Innovation

Presented to:

Presentation Outline

- Review of CEATI Background
- Conventional Hydro Program Update

CEATI Interest Groups:

CEATI currently operates 14 focused Interest Groups

Generation & Utilization

- Hydraulic Plant Life
- Dam Safety
- Water Management
- Strategic Options for Sustainable Power Generation
- Thermal Generation
- Customer Energy Solutions

Distribution

- Distribution Assets Life Cycle Management
- Power Quality

Transmission

- Life Cycle Management of Substation Equipment and Apparatus
- Power System Planning and Operations
- Overhead Line Design Issues & Wind and Ice Storm Mitigation
- Transmission Line Asset
 Management
- Transmission Underground Cables
- Transmission Infrastructure
 Protection

Alcan Altalink I P ATCO Electric BC Hydro British Columbia Transmission Corporation Brookfield Power Churchill Falls (Labrador) Corporation Columbia Power Enbridge Gas Distribution Inc. **ENMAX** Power Corporation FPCOR FortisAlberta Inc. FortisBC Inc Great Lakes Power Limited Hydro One Networks Inc. Hydro Ottawa Hydro-Québec Hydro-Québec TransÉnergie Manitoba Hydro Natural Resources Canada New Brunswick Power Newfoundland & Labrador Hydro Newfoundland Power Inc. Nova Scotia Power Inc. Ontario Center of Excellence Ontario Power Authority **Ontario Power Generation** PAPRICAN Saskatoon Light & Power SaskPower Toronto Hydro-Electric System Limited TransAlta Energy TransCanada Pipelines Veridian Connections

For more information regarding our Interest Groups, Events and Publications, visit www.ceatech.ca

Over 700 participants from utilities around the world

Presentation Outline

- Review of CEATI Background
- Conventional Hydro Program Update

(Asset/Plant/Operations/Mechanical/Electrical Engineering Managers)

- » 47 utilities represented
- » The HPLIG is a collaborative, technology-focused program designed to assist hydroelectric utilities in their efforts to:
 - 1. Lower capital and operations costs,
 - 2. Extend equipment life,
 - 3. Improve efficiency,
 - 4. Increase reliability and reduce outage times for equipment repair and maintenance.
 - 5. Improve safety and environmental performance,
 - 6. Improve risk based asset management decision making, and
 - 7. Improve performance evaluation and benchmarking techniques.

» 2009 HPLIG Meeting #1: – February 12-13, 2009 in Los Angeles, CA

» 2009 HPLIG Meeting #2:

- September 17-18, 2009 in Montreal, QC

» On-Going Technology Reviews:

- Hydroelectric Fire Probabilities & Fire Risk Assessment
- Brush Gear Maintenance
- Head Gate Testing Protocols
- Training for Hydro Plant Staff (Including Web Based Approaches)
- Head Gate and Spill Gate Bushings Wear Assessment
- Quantifying the Non-Energy Benefits of Hydro Power
- Development of a Learning & Reference Tool to Improve Awareness and Understanding of Hydraulic Phenomena Which Can Occur in Operating Hydraulic Turbines

- » On-Going Technology Reviews: Hydroelectric Fire Probabilities & Fire Risk Assessment
 - A framework will be developed for fire hazard risk assessment. Fire types to be considered include:
 - 1. Indoor oil-insulated Transformer fires
 - 2. Generator fires
 - 3. Control room fires
 - 4. Cable fires
 - 5. overhaul/Transient fires

- » On-Going Technology Reviews: Hydroelectric Fire Probabilities & Fire Risk Assessment
 - Lessons Learned Data Base:
 ex. Lightning Strike to Telephone Service of major hydroelectric generating station.
 - Lightning strike on local telephone company system approx 3 miles away;
 - •Major fault occurred in telephone entry panel in station relay and telecom room;
 - •Fault burned wiring and entry cabinet, ignited plywood backing the panel;
 - •Fire spread to the cable tray above the panel.

- » On-Going Technology Reviews: Hydroelectric Fire Probabilities & Fire Risk Assessment
 - Lessons Learned Data Base:
 Lightning Strike on Telephone Service of major hydroelectric generating station.
 - Damage isolated to telecom and relay control room;
 - Plant was out of operation for 10 days;
 - Total costs of approx \$10 million;

•Cost of fire protection and prevention equipment for floor space = \$50k.

- » On-Going Technology Reviews: Quantifying the Non-Energy Benefits of Hydro Power
- Hydropower and Transmission Benefits (metrics):

Sector	Direct Net Value \$	Annual Value \$	Annual Regional Income \$	Direct Present Value \$
Energy	\$/kWh	Total \$	\$/Region	\$/Project
Demand	\$/kW	Total \$	\$/Region	\$/Project
Reserves	\$/kWh	Total \$	\$/Region	\$/Project
Back-Up Load Following	\$/kWh	Total \$	\$/Region	\$/Project
Market Hedging	\$/kWh	Total \$	\$/Region	\$/Project
Voltage Stability	\$/kWh	Total \$	\$/Region	\$/Project

- » On-Going Technology Reviews: Quantifying the Non-Energy Benefits of Hydro Power
- Public Use and Industrial Benefits (metrics):

Sector	Direct Net Value \$	Annual Value \$	Annual Regional Income \$	Direct Present Value \$
Recreation	\$/Day of Recreation	Total \$	\$/Project/ Region	\$/Project/ Region
Land Management	\$/Acre	Total \$	\$/Project/ Region	\$/Project/ Region
Irrigation	\$/Acre-ft.	Total \$	\$/Project/ Region	\$/Project/ Region
Flood Control	\$/Acre-ft.	Total \$	\$/Project/ Region	\$/Project/ Region

- » On-Going Technology Reviews: Quantifying the Non-Energy Benefits of Hydro Power
- Public Use and Industrial Benefits (metrics):

Sector	Direct Net Value \$	Annual Value \$	Annual Regional Income \$	Direct Present Value \$
Municipal	\$/Acre-ft.	Total \$	\$/Project/ Region	\$/Project/ Region
Navigation	\$/Ton/Mile	Total \$	\$/Project/ Region	\$/Project/ Region
Industrial Cooling	\$/Acre-ft.	Total \$	\$/Project/ Region	\$/Project/ Region
Climate Change	\$/Ton (CO2)	Total \$	NA	NA

» On-Going Projects:

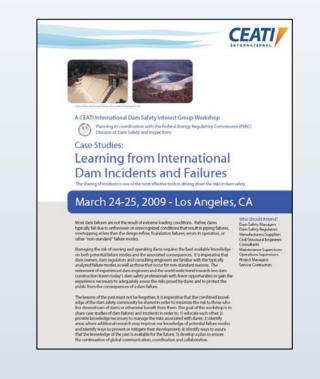
- Vibration Analysis Force and Vibration Relationship
- Mechanical Overhaul Guide for Hydroelectric Turbine Generators
- Best Practice Guide for Planning and Executing Hydro Overhaul and Retrofit Projects/Optimization of Rehabilitation
- Dissection, Condition Assessment and Analysis of Failed and Un-Failed Aged Stator Windings Taken from Hydrogenerators
- Turbine/Generators Shaft Stress Analysis Methods and Limitations
- ASME PTC18 Short Converging Intake Plow Project: Kootenay Canal Comparative Flow Tests

(Civil Engineering and Dam Safety Program Managers)

» 38 owners represented

- » The Dam Safety Interest Group is composed of Dam Owners who jointly sponsor research & development projects designed to help assess and improve the safety of dams.
- » Today, the DSIG is represented internationally by participants from Canada, the United States, Australia, Sweden, the Netherlands, France, the United Kingdom and Germany.

» 2009 DSIG Meeting #1:


- March 24-25, 2009 in Los Angeles, CA Industry Workshop
- March 26-27, 2009 in Los Angeles, CA
- » 2009 DSIG Meeting #2:

- October 8-9, 2009 in Whistler, BC

- » DS2009 Industry Workshop Case Studies: Learning from International Dam Incidents and Failures
- » Planning in coordination with the FERC.
- Total of 15 case studies presented on Liquefaction, Piping/Seismic
 Deformation, Piping along
 Outlets/Sliding of Concrete Dams, and
 Operation Controls and Human
 Interactions.
- » Over 140 attendees
- » 35 owners represented.

- » On-Going Project: Dam Monitoring and Data Analysis Best Practices
 - Contractor: Paul C. Rizzo & Associates
 - Sponsored by 17 owners and the FERC
 - Project commenced on April 9, 2009 at the Georgia Power Offices in Atlanta (approximately 22 months in duration).
- » Primary Focus on Program Management:
 - Identify the responsibilities of management;
 - Review the key components for managing performance of the overall monitoring program;
 - Outline proper coordination and communication protocols between and among these program components;
 - Transferring expertise and intimate knowledge of projects from one generation to the next.

- » On-Going Project: Gauging the Effectiveness of a Dam Safety Program
- » Objectives:
 - To enable participants to review and improve the ways in which they judge the effectiveness of their dam safety programs.
- » A one-day workshop was held in October 2008, providing participants the opportunity to present and discuss their organizations' safety program;
- » Presentations by 9 dam owners and the FERC, over 30 owners in attendance;
- » This led to the identification of 7 attributes that demonstrate a good dam safety program;
- » For each of these attributes DSIG participants have been asked to provide at least 1 suggested performance measure

- » On-Going Project: Gauging the Effectiveness of a Dam Safety Programs
- » Seven Attributes of a good Dam Safety Program Indentified:
- 1. Clear understanding of responsibilities at all levels;
- 2. Regulatory compliance;
- 3. Conformance with risk criteria and standard good practices, including for example:
 - design criteria
 - inspections and monitoring
 - periodic reviews
 - emergency preparedness
 - change management;

- » On-Going Project: Gauging the Effectiveness of a Dam Safety Programs
- » Seven Attributes of a good Dam Safety Program Indentified (Cont'):
- 4. Systematic management to address non-conformance and reassess changing hazards;
- 5. Progress of risk reduction;
- 6. Dynamic organisation with learning and continual improvement, evidenced in:
 - training of staff/ competency
 - education of stakeholders
 - learning from incidents (own and others')
 - improving collective knowledge (R&D, industry groups);
- 7. Financial responsibility.

- » On-Going Project: Reliability and Capability of Discharge Facilities Task Force
- » Areas to be reviewed:
 - Discharge experiences (active and passive failures) at dams;
 - Review problems, concerns, needs, etc facing owners;
 - Identify and pursue study areas that address these;
 - Identify owners, engineers and manufacturers demonstrating best practices;
 - Conduct workshops that facilitate this development work.

Chris Hayes

Director, Generation and Utilization Program

CEATI International Inc.

514-866-5377 chris.hayes@ceati.com

www.ceati.com