

Mitigation measures for Lake Sturgeon associated to new hydroelectric generating stations in the James Bay territory (Québec, Canada)

Frédéric Burton
Biologist and Project manager
Environnement Illimité inc.

Study area

Eastmain-1 Hydroelectric Development / Eastmain 1-A and La Sarcelle generating stations and Rupert Diversion

Context

- Large study area
 - More than 850 km of river
 - Reduced flow on 325 km
 - 950 km² of flooded surface area
- Relatively short period of time to study, suggest, find agreement with land users and authorities, and realize mitigation measures
- Lake Sturgeon
 - Species valued by the land users
 - Species at risk (proposed by COSEWIC: special concern)
 - Partial information about the populations

Impact study: Strategy

- Include land users at the beginning of the process
 - Local knowledge is the starter point
- Select effective method to gather fast and useful information
 - Focus on key species (Lake sturgeon)
 - Focus on key biologic activities
 - Migration (area use)
 - Spawning habitat
 - Feeding habitat
 - Wintering habitat

Impact study: Methods

Area use studied by telemetry

External radio transmitters for adults from 2002 to 2004

277 tagged Lake sturgeon

Impact study: Methods

Confirm spawning ground

Impacts and mitigation measures

Impacts and mitigation measures

Drying out and flooding of spawning grounds

Create new spawning ground

Spawning habitat — Design and construction

Gather information on natural sites

650 m²

Dried spawning ground Eastmain river KP 215

Spawning habitat — Design and construction

- Selection of sites
 - Proximity of impacted sites
 - Adequate flowing conditions
 - Access for construction
- Design of spawning ground
 - Bathymetric data -
 - Flow model

Rupert KP 333

Spawning habitat — Design and construction

Spawning ground construction

2 000 m²

Eastmain KP 207

Misticawissish KP 35

500 m²

Spawning habitat — Results for Eastmain-1

Fish pass

Rivière Eastmain

- Stability: Minimal material movement
- ***Adequate spawning conditions at KP 207
- Spawning activity
 - Use of KP 207 site 2 years after construction
- Larval drift
 - One year comparable to natural conditions
 - Three years lower than natural conditions

Spawning ground

Concrete blocks

Spawning habitat — Discussion

- Plan a minimum of 5 years of follow up
 - Success is not always immediate
- Be prepared for corrective work
 - Keep access to your site
 - Keep extra spawning material near the site (20%)

Keep sufficient budget for the follow up!

