U.S. Department of Energy Advanced Water Power

Technology Lead, Water Power Office of Wind and Hydropower Technologies National Hydropower Association 13 May 2009

DOE water power activities were restarted in FY 2008

- DOE authorized to reestablish a water power program:
 - EPAct 2005 addressed both conventional hydro (CH) plus marine and hydrokinetic technologies (MHK)
 - EISA 2007 emphasizing MHK
- \$10 million appropriated in FY08 for both CH and MHK
- '09 Budget → \$40m for CH and MHK
- Recovery Act

Energy Efficiency & Renewable Energy

Technology Definitions

- Marine and hydrokinetic (MHK) refers to energy from:
 - (1) waves, tides, and currents in oceans, estuaries, and tidal areas;
 - (2) free flowing water in rivers, lakes, and streams;
 - (3) free flowing water in man-made channels; and
 - (4) differentials in ocean temperature (ocean thermal energy conversion).
- <u>Conventional hydropower (CH)</u> refers to energy from any source that uses a dam, diversionary structure, or impoundment for electric power purposes.
- <u>Advanced water power</u> refers to both marine and hydrokinetic power and conventional hydropower.

MHK Development and Deployment faces Multiple Barriers

- Technologies in very early stage of development, few full-scale demonstrations
 - Lack of cost and performance data
 - Lack of standards for development, testing, and evaluation
 - Prototype deployment is costly and time-consuming
 - High capital costs and technology risk
- Unique survivability/reliability challenges
 - O&M is difficult and costly in rough marine environments must be minimized
 - Minimizing O&M in rough marine environments requires extremely robust designs
- Lack of information on device/resource interaction
 - Few technology-specific models and tools
- Lack of detailed resource data
- Uncertain environmental, navigational, and competing use impacts
- Complex regulatory framework

DOE's R&D Priorities for MHK

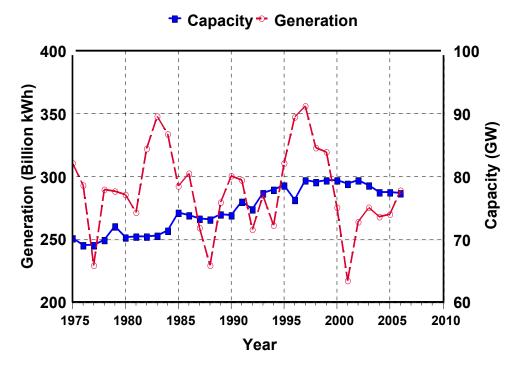
Energy Efficiency & Renewable Energy

Industry RD&D Needs *

- System Deployment and Testing
- System
 Performance and
 Reliability
- Environment
- Standards Development
- Resource Modeling

DOE Water Power Program Priorities

- Facilitate the design, development and testing of full scale MHK prototypes and components in order to generate data on performance and impacts
- Facilitate design and development of systems and components in order to reduce technology costs and improve performance and reliability
- Identify, evaluate and mitigate environmental impacts
- Characterize, evaluate and compare the wide variety of MHK technologies; provide US input into standards development
- Determine the available, extractable, and costeffective water resources in the US


* Results from the October 2008 Industry R&D Needs Workshop, Washington, DC

Multiple issues also confront existing hydropower assets in the U.S.

Energy Efficiency & Renewable Energy

- Hydropower capacity stagnating or decreasing
 - Federal projects are progressively less available for generation
 - Nonfederal projects have lower capacity factors after relicensing (renewal if operating licenses through the FERC)
- History of environmental impacts
- Lack of comprehensive projectlevel information (technology utilization, generation profiles, water use, etc.)
- Minimal quantification of ancillary value, esp. variable resource integration

Historical trends in Capacity and Generation

Program Priorities Aligned to Increase Hydropower Generation and Value

Energy Efficiency & Renewable Energy

Federal investment is necessary to overcome issues reducing hydropower generation and to take advantage of opportunities to increase grid stability and variable resource integration.

Water Program Priorities Include:

Increase Power Generation

- Develop and demonstrate technologies to modernize hydro facilities, including pumped storage
- Expand incremental hydropower

Improve Environmental Performance

- Technological advancements to improve fish passage
- Understand GHG emissions from reservoirs
- Assess cumulative impact and reduce stresses on wildlife and environment

Understand Assets and Resources

- Describe resources, generation patterns, water availability, cost of development and economic impacts of existing hydro fleet
- Identify full range of undeveloped incremental hydro resources and opportunities to update/modernize facilities

Maximize Ancillary Benefits

- Assess and quantify value of existing hydro/PS fleet to support grid stability and further integrate variable generation
- Identify opportunities to increase ancillary value, including the development of new technologies and processes, and policies

Ongoing Activities

- 2008 Funding Opportunity Announcement
 - Technology/component development and testing
 - Resource assessments
 - Project siting studies
 - National Marine Renewable Energy Centers
- National Hydropower Asset Assessment Project
- Report to Congress: Potential Environmental Effects of Marine and Hydrokinetic Energy Technologies
- Cooperative Research and Development Agreements
- Global Marine and Hydrokinetic Technology and Project Database
- Jobs and Economic Development Index (JEDI) modeling
- International Energy Agency, Ocean Energy Systems (IEA-OES) Annex IV, Assessment of Environmental Effects and Monitoring Efforts for Ocean Wave, Tidal, and Current Energy Systems
- International Electrotechnical Commission, Technical Committee 114 Secretariat
- Marine and Hydrokinetic Industry Roadmap

2009 Funding Opportunities

Industry-led Projects

- Topic Area 1: Marine and Hydrokinetic Energy Conversion Device or Component
 Design and Development
- Topic Area 2: Marine and Hydrokinetic Site-specific Environmental Studies/Information
- Topic Area 3: Advanced Water Power Market Acceleration Projects/Analysis and Assessments
 - Resource Assessments: In-stream, ocean current, non-powered dams, OTEC
 - Cost scenarios: MHK, OTEC
- Possibility of additional Conventional Hydropower Topics

Laboratory-led Projects

- Topic Areas 1 & 3: Supporting Research and Testing (MHK, CH)
 - Computational tools/models to predict device/array behavior; advanced materials
- Topic Areas 2 & 4: Environmental Assessment and Mitigation Methods
 - Tools and studies to predict, evaluate, and minimize environmental impacts

www.fedconnect.net search "advanced water power"

Water power questions?

Alejandro Moreno

Technology Lead, Water Power Wind and Hydropower Technologies U.S. Department of Energy 202-586-8171 alejandro.moreno@ee.doe.gov

Megan McCluer

Program Manager

Wind and Hydropower Technologies

U.S. Department of Energy

202-586-7736

megan.mccluer@ee.doe.gov

